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Applications of Markov Chain Approximation Methods to

Optimal Control Problems in Economics∗

Thomas Phelan Keyvan Eslami

Federal Reserve Bank of Cleveland Ryerson University

May 13, 2022

Abstract

In this paper we explore some benefits of using the finite-state Markov chain ap-

proximation (MCA) method of Kushner and Dupuis (2001) to solve continuous-time

optimal control problems in economics. We first show that the implicit finite-difference

scheme of Achdou et al. (2022) amounts to a limiting form of the MCA method for a

certain choice of approximating chains and policy function iteration for the resulting

system of equations. We then illustrate that relative to the implicit finite-difference ap-

proach, using variations of modified policy function iteration to solve income fluctuation

problems both with and without discrete choices can lead to an increase in the speed of

convergence of more than an order of magnitude. Finally, we provide several consistent

chain constructions for stationary portfolio problems with correlated state variables,

and illustrate the flexibility of the MCA approach by using it to construct and compare

two simple solution methods for a general equilibrium model with financial frictions.

JEL Codes: C63, E00, G11.

Keywords: Markov chain approximation, Dynamic programming, numerical meth-

ods, financial frictions.
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1 Introduction

Dynamic optimization problems are ubiquitous in economics, and since closed-form ex-

pressions for such problems are available only in isolated special cases, quantitative work

requires the use of numerical methods for their solution. In this paper we solve a number of

dynamic optimization problems that arise naturally in economic applications by employing

the Markov chain approximation (MCA) method of Harold Kushner and Paul Dupuis.1 The

method has several advantages over alternative approaches to continuous-time optimization

problems that remain unexploited.2 To the best of our knowledge, this paper is the first to

outline such advantages by means of examples taken from the economics literature.

The most common approach to solving continuous-time optimization problems is the

method of finite-differences, which has recently been applied to a number of economic en-

vironments by Achdou et al. (2022). In this method, one first employs recursive arguments

to establish that the value function is a (viscosity) solution of a partial differential equation

known as the Hamilton-Jacobi-Bellman equation, before replacing derivatives with quo-

tients and solving the ensuing finite system of equations. In contrast, the MCA method

approximates the solution to the continuous-time control problem by replacing it with a

problem in which the state evolves according to a Markov chain assuming finitely many

values, and applies discrete-time arguments to this latter problem.

The validity of the approximation method is based on the intuitive idea that if the

discretized process is “close” to the original process, then the value function of the dis-

crete problem will be close to the original value function. The criteria necessary for the

convergence of the value function of the discrete problem to that of the original problem

are referred to as local consistency conditions. These amount to the requirement that the

increments of the chain possess the first- and second-order conditional moments of the orig-

inal process, at least up to a term that is second-order in the time increment. One benefit

to proceeding in this manner is that arguments from discrete-time dynamic programming

already familiar to economists — such as the contraction mapping theorem and Blackwell’s

conditions — are applicable to this discrete problem and ensure the convergence of various

well-known numerical algorithms. Further, even in the presence of non-convexities and in

multiple dimensions, the Markov chain may often be chosen so as to eliminate the need for

costly root-finding, without sacrificing the global convergence of the algorithm.

In this paper, we first establish a connection between the above approaches by showing

that a limiting case of one widely used finite-difference scheme is equivalent to a particular

case of the MCA method. Formally, we show that a limiting version of the implicit finite-

1For a textbook treatment see Kushner and Dupuis (2001).
2For earlier examples of economic applications of these methods see, e.g., Barczyk and Kredler (2014b),

Barczyk and Kredler (2014a), and Golosov and Lucas Jr (2007).
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difference scheme of Achdou et al. (2022) is equivalent to using the MCA method for a

certain chain with negligible timestep and solving the resulting Bellman equation using

policy function iteration. Establishing this connection shows that the former algorithm

amounts to making two choices, a choice of chain and a choice of solution method, neither of

which may be optimal for a given problem. The two applications in this paper illustrate the

benefits of tailoring the solution method for the discrete Bellman equation to the problem

at hand.

The first class of applications shows the benefits of departing from policy function iter-

ation. It is well known that policy function iteration converges at a quadratic rate near the

solution, and so typically requires a small number of iterations for convergence. However,

updating the value function requires solving a linear system of equations, which becomes

very costly computationally as either the number of gridpoints increases or the sparsity

structure of the matrix becomes more complex. One therefore expects that the implicit

finite-difference method will slow down rapidly as either the number of gridpoints or the

dimension of the state variable increases. Section 3 explores this idea by considering vari-

ations of a problem common in economics, in which an infinitely lived risk-averse agent

makes a consumption-savings choice in the presence of idiosyncratic risk and/or discrete

choices over a durable good. We show that for standard parameters and moderate grid

sizes, variations of the modified policy function iteration of Puterman and Shin (1978) can

lead to an increase in the speed of convergence of more than an order of magnitude relative

to policy function iteration, for the same degree of tolerance between successive iterations.

Further, we provide a novel variation of modified policy function iteration that remains

convergent even when the timestep vanishes, and, as such, is well-suited to discrete-choice

problems in which the state may transition instantaneously.

Our second application illustrates the superiority of policy function iteration over value

function iteration for two-dimensional stationary portfolio problems by comparing two al-

gorithms for computing competitive equilibria in a macrofinance model with time-varying

volatility. Both algorithms consist of two distinct steps. The first is similar to the “static

step” of Brunnermeier and Sannikov (2016), and computes policy functions given con-

tinuation values before imposing market-clearing and consistency between individual and

aggregate laws to update all equilibrium quantities. The second step then takes prices and

the aggregate law of motion as given, and updates the continuation values. The purpose

of this example is to again illustrate that the choice of chain is separate from the choice of

solution method for the discrete problem, and that the practitioner may choose the latter to

exploit features of the given problem. Indeed, although we draw upon the finite-difference

literature to construct our chains, for the stationary problems appearing in these models,

convergence appears more rapid and stable if one uses policy function iteration instead of
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value function iteration to update the value function. Employing value function iteration

yields an algorithm that is similar to the “false transient” approach used in Bonnans et al.

(2004) and d’Avernas and Vandeweyer (2019) and the “iterative method” of Brunnermeier

and Sannikov (2016), and requires a delicate choice of timestep that may be avoided when

time does not explicitly enter the individual problems. As with the rest of the literature,

we are unable to establish convergence of our algorithm to the competitive equilibrium.

However, since we show how to efficiently solve individual portfolio problems, we believe

that our policy iteration algorithm (or extensions thereof) will prove useful for applications

similar to those surveyed in Brunnermeier and Sannikov (2016).3

The two classes of examples we present are intended to demonstrate the flexibility that

the Markov chain approximation method provides to the modeller. However, they are by no

means the only such avenues for flexibility. Multi-grid methods, the Gauss-Seidel algorithm,

and control-dependent interpolation intervals, just to name a few, are other refinements

that can be readily deployed in either the construction of the approximating chain or the

numerical method used to solve the resulting Bellman equation. The purpose of this paper

is to show that in the context of continuous-time optimization problems, substantial gains

in speed can be obtained simply by judiciously choosing between value function iteration,

policy function iteration, and variations of modified policy function iteration, techniques

that are likely already familiar to most economists from the discrete-time theory.

2 Motivating example

In this section we outline the MCA method in the context of the stochastic one-sector

neoclassical growth model. Although this example may be easily solved via a number of

different numerical methods, it serves to give an intuitive account of how the method works

and to contrast it with the finite-difference method. As we noted in the introduction, the

basic idea here is to approximate the solution by solving a problem in which the state

evolves according to a chain that assumes only finitely many values. The value function

associated with this problem will be a good approximation to the original value function if

for any given control vector, the increments of the chain share the same first and second

conditional moments as the original process.

3Note that the possibility of gains in speed from such an approach is explicitly conjectured on page 1541
of Brunnermeier and Sannikov (2016).
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2.1 Setup

Suppose that a social planner wishes to maximize the expected lifetime utility of an infinitely

lived representative agent with the following preferences over consumption

U(c) = E
[
ρ

∫ ∞

0
e−ρtu(ct)dt

]
.

We assume that capital and consumption goods may be costlessly transformed into one

another. The sole state variable is then the capital stock, which evolves according to

dkt = µ(kt, ct)dt+ σ(kt)dZt, (1)

where Z = (Zt)t≥0 is a standard Brownian motion, σ is a smooth function, and µ(k, c) =

f(kt) − δkt − ct for some smooth function f and constant δ > 0. For simplicity suppose

σ vanishes outside of some interval [k, k] where k > k > 0 and f(k) > δk, and that at

these boundary points consumption must satisfy µ(k, c) ≥ 0 and µ(k, c) ≤ 0. Given any

k0 ∈ [k, k] a natural way to solve this problem is to replace (1) with

kt+∆t = kt + µ(kt, ct)∆t +
√
∆tσ(kt)Xt (2)

for some ∆t > 0, where (Xt)
∞
t=0 is an i.i.d. sequence of random variables with mean zero

assuming the values ±1. Standard dynamic programming arguments, such as those outlined

in Stokey (1989), imply that the value function for the discrete-time problem is the unique

fixed point of the functional equation B[V ] = V , where

B[V ](k) = max
c∈Γ(k)

∆tρu(c) + e−ρ∆tE[V (k + µ(k, c)∆t +
√

∆tσ(k)X)] (3)

where Γ(k) = [0, f(k)− δk], Γ(k) = [f(k)− δk, c] and Γ(k) = [c, c] otherwise, where c and c

are any values that ensure that capital never leaves [k, k]. Further, one may show that B is

a contraction on the space of bounded continuous functions on [k, k], and so the fixed point

may be found by applying it repeatedly to any initial guess.

The finite-state Markov chain method of Kushner and Dupuis (2001) approximates

the original problem in a fundamentally different way. Instead of (2), we consider an

optimal control problem in which the capital stock assumes values in a finite grid S :=

{k, k+∆k, . . . , k−∆k, k}, where ∆k = (k− k)/N for some N > 1. We construct a Markov

chain such that the increments possess the same conditional mean and variance as (2) as

follows. If ct = c, then the increments of the Markov chain at kt = k are supported on
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{k −∆k, k, k +∆k} with probabilities

p(k, k ±∆k, c) =
∆t

∆2
k

(
σ2(k)/2 + ∆kµ(k, c)

±)
p(k, k, c) = 1− p(k, k −∆k, c)− p(k, k +∆k, c)

(4)

where x± := max{±x, 0} for x ∈ R. Associated with (4) we have the Bellman operator

B̃[V ](k) = max
c∈Γ(k)

∆tρu(c) + e−ρ∆tE
[
V (k′)

]
, (5)

and so using the stochastic dynamic programming theory in Stokey (1989), one may show

that the operator in (5) is a contraction and so the fixed point in the space of functions on S

may be found by iterating successively on an arbitrary guess. Now note that the conditional

mean and variance of the increment ∆kt := kt+∆t − kt are E[∆kt|kt = k] = ∆tµ(k, c)

and E[(∆k)2|kt = k] − E[∆k|kt = k]2 = ∆t

(
σ(k)2 +∆k|µ(k, c)| −∆tµ(k, c)

2
)
, respectively.

Indeed, the probabilities in (4) were chosen for precisely this purpose: the σ terms ensure

that the chain has the right variance, and their symmetry ensures that they do not affect

the mean, while the µ terms ensure that the chain has the right mean. One may then use

weak convergence arguments to show that as ∆t,∆k → 0 the fixed points of the operators

defined in (3) and (5) both converge to the value function of the original problem.

So why is this construction useful, given that both (3) and (5) lead to a discrete-time

Bellman equation? The main point here is that in the second discretization, when the agent

contemplates the effect of varying her consumption, she need only compare local payoffs;

the shape of the value function is irrelevant. Using (4) and omitting terms independent of

consumption, for j = 0, 1 . . . , N the problem of the consumer at kj is

max
c∈Γ(k)

ρu(c) + e−ρ∆t
(
µ(kj , c)

+VF (kj)− µ(kj , c)
−VB(kj)

)
(6)

where VF (kj) = [V (kj+1)− V (kj)]/∆k and VB(kj) = [V (kj)− V (kj−1)]/∆k denote forward

and backward differences. The crucial difference between (3) and (6) is that in the latter,

optimal consumption is available in closed-form, regardless of the shape of either the value

function or the production function. To illustrate, suppose that utility is logarithmic and

that the production function is f(k) = max{k1/3, 5(k−10)1/3}, which is non-concave and has

a “kink” at k = 10. Figure 1 shows the computed consumption and drift for the parameters

(ρ = 0.1, δ = 0.075, k = 1, k = 80, N = 1000,∆t = 10−6), for both a deterministic (σ = 0)

and a stochastic (σ = 0.2 in interior, vanishing at boundaries) case. We used policy function

iteration with a tolerance in the supremum norm between iterations of 10−6. In both cases,

convergence occurs in less than 0.03 seconds using Python and the standard scipy sparse

solver (scipy.sparse.linalg.spsolve) to update the value function on an Intel Core i7-8650U
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Figure 1: Policy function and drift in a non-concave one-sector growth model

processor, beginning with an initial guess of zero saving.

We now compare the above approach with a class of finite-difference methods that have

been applied to a number of economic problems of interest by Achdou et al. (2022), who

in turn build upon the earlier application of Candler (2001). We first (heuristically) derive

the appropriate partial differential equation in order to motivate the algorithm.4 By the

Principle of Optimality, for any t, h > 0 we have

V (k, t) = max
c

E
[
ρ

∫ t+h

t
e−ρ(s−t)u(c(s))ds+ e−ρhV (k(t+ h), t+ h)

]
.

Subtracting V (k, t) from both sides, dividing by h and using Ito’s lemma gives

0 = max
c∈Γ(k)

ρu(c) + µ(k, c)
∂V

∂k
+

σ(k)2

2

∂2V

∂k2
+

∂V

∂t
− ρV.

A common approach to solving the above partial differential equation is to approximate the

partial derivatives with various choices of difference quotients and solve the resulting finite

system of equations. Achdou et al. (2022) proceed in this manner and focus primarily on

what they term the implicit method. To understand the algorithm, define a rectangular

grid S = {k0, . . . , kN} × {tM , . . . , t0} for the domain [k, k] × [0, t0] for some t0 > 0 with

constant increments ∆k and ∆t in each dimension, and imagine we are given a terminal

value V (k, t0). For each (kj , tn) ∈ S write V n(kj) = V (kj , tn) and define V n+1 as the

4For details we refer to Achdou et al. (2022) and Tourin (2013) and the references therein. Our goal is not
to recapitulate the theory of finite-difference methods but to instead relate it to Markov chain approximation
methods.
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solution to the linear system

ρV n+1(kj) = ρu(cnj ) + µ(kj , c
n
j )

+V n+1
F (kj)− µ(kj , c

n
j )

−V n+1
B (kj)

+
σ(kj)

2

2
V n+1
C (kj) +

1

∆t
[V n(kj)− V n+1(kj)]

(7)

for j = 1, . . . , |S|, where VC(kj) = [V (kj−1) − 2V (kj) + V (kj+1)]/∆
2
k denotes the second-

order central difference, VF and VB denote forward and backward differences as above, and

cnj solves

max
c∈Γ(kj)

ρu(c) + µ(kj , c)
+V n

F (kj)− µ(kj , c)
−V n

B (kj).

In practice, convergence is typically rapid and insensitive to changes in ∆t when the latter

is large. To see why, note the fixed point of (7) solves 0 = maxc∈Γ(k) ρu(c) + TIFD(c)V ,

where

TIFD(c)V (k) = µ(k, c)+VF (k)− µ(k, c)−VB(k) +
σ(k)2

2
VC(k)− ρV (k). (8)

If we set ∆t = ∞, then the implicit method may be written as follows: fix V0; find c0

solving maxc∈Γ(k) ρu(c) + TIFD(c)V0; find V1 solving 0 = ρu(c0) + TIFD(c0)V1; replace V0

with V1 and repeat until convergence. The method fits within the framework of Puterman

and Brumelle (1979), who show that convergence is assured if TIFD(c)
−1 ≤ 0 for all policy

functions c. Finally, if we define T (c; ∆t) = [e−ρ∆tP (c; ∆t)− I]/∆t, where P (c; ∆t) denotes

a matrix populated by the transition probabilites in (4) and I is the identity, then the

following allows us to understand both the convergence properties of the implicit method

and its relationship to the Markov chain approximation method.

Lemma 1. For any policy c we have lim∆t→0 T (c; ∆t) = TIFD(c).

Proof. Simply compare the right-hand side of (8) with T (c; ∆t)V , which is

− (1− e−ρ∆t)

∆t
V (k) + e−ρ∆t

(
µ(k, c)+VF (k)− µ(k, c)−VB(k) +

σ(k)2

2
VC(k)

)
from which the result follows by taking limits.

Lemma 1 shows that the implicit finite-difference method of Achdou et al. (2022)

amounts to solving the original problem by considering the limit of a particular family of

Markov chains and a particular solution method (policy function iteration) for the resulting

system of equations. Although Achdou et al. (2022) acknowledge a connection between

Markov chain approximation methods and their finite-difference approach, we know of no

analysis that provides the student of economics with guidance on which method to use in
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any particular situation. The remainder of this document is devoted to this task. We first

outline the method formally before turning to economic applications.

2.2 The Markov chain approximation method

This section provides a general overview of the theory developed in Kushner and Dupuis

(2001). We focus only on fixing consistent notation and stating the relevant results and

definitions necessary to understand subsequent examples and refer the reader to the text

for details. We are interested in continuous-time control problems of the following form.

Definition 2. Let (Bt)t≥0 be a standard n-dimensional Brownian motion defined on a

probability space (Ω,F , P ), with (Ft)t≥0 the associated natural filtration. For a compact

set U ∈ Rm define C to be the set of admissible controls — the set of stochastic processes

(ut)t≥0 adapted to (Ft)t≥0 such that ut ∈ U for all t ≥ 0. For some functions F : Rn×U → R,
µ : Rn × U → Rn and σ : Rn × U → Rn×n we consider the problem

V (x) = max
u∈C

E
[∫ ∞

0
e−ρtF (xt, ut)dt

]
dxt = µ(xt, ut)dt+ σ(xt, ut)dBt

x0 = x.

We refer to x and u as the state and control variables, F as the payoff function, and µ and

σ as the drift and diffusion functions.

For the income fluctuation problems in this paper we make the following assumption.

Assumption 1. The functions F, µ, and σ are bounded and Lipschitz.

Assumption 1 can be weakened slightly without affecting the validity of the approach.

However, it covers many examples of interest to us and ensures that a weak solution to

the law of motion for the state variable exists and is unique for any admissible control, so

that the value function in Definition 2 is well-defined. To reduce a problem of the form in

Definition 2 to a finite-state problem, we must specify how to approximate the underlying

state and objective function. The following introduces the notion of a locally consistent

approximating Markov chain, which captures the requirement that the first and second

conditional moments approximately coincide with their continuous-time counterparts.

Definition 3. A finite-state Markov chain approximation to the processes (xt)t≥0 satisfying

dxt = µ(xt, ut)dt + σ(xt, ut)dBt for some admissible control (ut)t≥0 consists of a family of

Markov chains (ξh)h>0 over finite state spaces (Sh)h>0, together with a family of time

increment functions (∆ht(x, u))h>0, all indexed by scalars h > 0, satisfying:
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(i) limh→0 supx,u∆
ht(x, u) = 0; and

(ii) infx,u∆
ht(x, u) > 0 for all h > 0.

Defining ∆h
nx = ξhn+1 − ξhn the approximation is locally consistent if

Eh
x,n,u[∆

h
nx] = ∆ht(x, u)µ(x, u) + o(∆ht(x, u))

Eh
x,n,u[(∆

h
nx− Eh

x,n,u[∆
h
nx])

2] = ∆ht(x, u)σ(x, u)σ(x, u)t + o(∆ht(x, u))
(9)

where Eh
x,u,n denotes the conditional expectation of the chain ξh at time thn given (ξhn, u

h
n) =

(x, u), where uhn := uthn , t0 = 0 and ∆htn = thn+1 − thn = ∆ht(ξhn, u
h
n). We refer to (9) as the

mean and covariance consistency requirements, respectively.

We will drop superscripts and subscripts from expectations, since the appropriate oper-

ator will be obvious from the context. For each Markov chain ξh we will approximate the

objective in Definition 2 as

E
[∫ ∞

0
e−ρtF (xt, ut)dt

]
≈ E

[ ∞∑
n=0

e−ρthn∆htnF (ξhn, u
h
n)

]
. (10)

For each h > 0, associated with the Markov chain ξh and control process (ut)t≥0, we define

the continuous-time processes ξ
h
and uh as the right-continuous and piecewise constant

processes that coincide with the above chains at the times (tn)n≥0. The sum on the right-

hand side of (10) is approximately E
[∫∞

0 e−ρtF (ξ
h
t , u

h
t )dt

]
with the only difference being the

continuous discounting on the intervals [tn, tn+1), which necessarily vanishes as h → 0. The

weak convergence arguments of Kushner and Dupuis (2001) are applied to these continu-

ously interpolated processes, so that all approximations to the original process are defined

on the same path space. However, for each h > 0 the value function we solve numerically

corresponds to the control problem with objective (10) and state evolving according to xh,

and so may be solved with discrete-time techniques.

Definition 4. Given a family of Markov chains {ξh}h>0 locally consistent with dxt =

µ(xt, ut)dt+ σ(xt, ut)dBt for each control, define the approximate value functions

V h(x) = max
u∈C

E

[ ∞∑
n=0

e−ρthn∆htnF (ξhn, u
h
n)

]
ξh0 = x

for any h > 0, where the maximum is once again over the set of all admissible controls.

The finite-state Markov chain approach applies discrete-time dynamic programming

arguments to problems of the form in Definition 4 rather than the original problem in

10



Definition 2. This leads to the Bellman equation for the Markov chain

V h(x) = max
u∈U

∆tF (x, u) + e−ρ∆tEu[V h(x′)] (11)

where x evolves according to the given approximating Markov chain. Our income fluctuation

problems will assume discounting and uniformly bounded payoff functions, so that there are

no subtleties regarding the applicability of the principle of optimality, and the fixed point

of (11) coincides with the sequence problem given in Definition 4. Familiar arguments,

such as those outlined in Stokey (1989), show that the right-hand side defines a contraction

on the space of functions on the (finite) state space. Finally, Kushner and Dupuis (2001)

show that under standard assumptions on the functions defined in the original problem in

Definition 2, local consistency ensures convergence of the approximate value functions to

the true value function, as stated in Theorem 5.2 of Chapter 10 in Kushner and Dupuis

(2001).

Theorem 5. Under Assumption 1 we have V h(x) → V (x) as h → 0.

The MCA method may be used to solve problems in which there are jumps in the state

variable. Although we do not strive for the most general framework possible, we outline

here the theory necessary to solve a problem of particular interest to economists, in which

a risk-averse consumer faces a consumption-savings problem with fluctuating income and

may consume discrete amounts of a durable consumption good. The state variable for the

agent will consist of her wealth, her income, and the current value of the durable good.

This necessitates a discussion of jump processes, since the purchase of the durable good will

coincide with a fall in wealth that does not vanish with the length of the time interval, and

so cannot be well modelled with a diffusion process. We therefore consider a jump-diffusion

process of the form

dxt = µ(xt, uDt)dt+ σ(xt)dZt + dJt(uJt) (12)

where (Jt)t≥0 is a jump process defined by

Jt =

∫ t

0

∫
Γ
q(xs−, uJs, φ)N(dsdφ). (13)

The control vector is written ut := (uDt, uJt) to illustrate that some components affect only

the drift and others affect only the jumps. In (13) one interprets the integrand q(xs−, uJs, φ)

as the size of the jumps at time s, with φ denoting the realization of some exogenous

uncertainty and supported in some compact set Γ. The quantity N is a Poisson random

measure with intensity density n(dtdφ) = λdt×Π(dφ), meaning E[N(A)] =
∫
A n(dtdφ) for

all Borel sets A. For the case analyzed in Section 3.4 we may assume that φ is supported at

a single point and that the jumps in (12) correspond to purchases of the durable good. It
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may help the reader to imagine that the “jumps” are arriving at a constant exogenous rate

λ > 0, but that they coincide with a movement in the state variable at date t only when

q(xt−, uJt, φ) ̸= 0.

To construct a locally consistent Markov chain for (12), one begins with a locally con-

sistent Markov chain for the diffusion component (with transition probabilities denoted by

phD) and obtains the approximation by independently drawing from this diffusion process

and the jump component. The definition of a locally consistent finite-state Markov chain

now includes a component qh representing the jumps of the Markov chain. The manner

in which the transition probabilities in Definition 6 are constructed from the probabilities

associated with the diffusion term has an intuitive interpretation. We may view each tran-

sition as arising by drawing from a jump process with probability λ∆t for some constant

∆t and drawing from the continuous process with probability 1− λ∆t.
5

Definition 6 (Local consistency with jumps). A family of finite-state Markov chains

{ξh}h>0 with state spaces {Sh}h>0 and transition probabilities {ph(x, x′)}x,x′∈Sh
is locally

consistent with the jump diffusion (12) if for each h > 0 there exist transition probabilities

{phD(x, x′, u)}x,x′∈Sh
and functions (qh)h>0 such that:

(i) The family of Markov chains defined by {phD(x, x′, u)}x,x′∈Sh
is locally consistent with

the diffusion process (zt)t≥0 defined by dzt = µ(zt, ut)dt+ σ(zt)dZt;

(ii) The functions (qh)h>0 converge to q uniformly as h → 0; and

(iii) For some δh(x, u) = o(∆t),

ph(x, x′, u) = (1− λ∆t − δh(x, u))p
h
D(x, x

′, u) + (λ∆t + δh(x, u))1x+qh(x,uJ )=x′ .

The analogue of Theorem 5 for the case of controlled jump-diffusion processes is outlined

in Chapter 13 of Kushner and Dupuis (2001).

To solve control problems of the form in Definition 2, we therefore need only solve the

Bellman equation (11) for some choice of a locally consistent approximating Markov chain.

This is important because the literature on dynamic programming with finite state spaces

contains a wealth of techniques for solving finite-state Markov decision problems. Section

3 illustrates the benefits of this viewpoint by solving an income fluctuation problem using

modified policy function iteration. Section 4 deals with high correlation among multiple

state variables, for which the construction of consistent chains poses some difficulties, and

is not considered in the analysis of Achdou et al. (2022).

5The following definition is less general than that given in Section 5.6.2 of Kushner and Dupuis (2001),
but is sufficient to cover the example in Section 3.4.
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3 Income fluctuation problems

We first consider the setting of an income fluctuation problem in order to illustrate the

benefits of departing from policy function iteration when solving various forms of income

fluctuation problems. Sections 3.1 and 3.2 first recapitulate the theory behind modified

policy function iteration and then explain our extension. Section 3.3 then considers an

income fluctuation problem in which income is the product of two diffusion processes and

the agent cares only about non-durable consumption. Section 3.4 considers a variation

of an income fluctuation problem with discrete choices over a durable good and applies

the normalization used prior to Lemma 1 to establish that an analogue of modified policy

function iteration is applicable even when the timestep is sent to zero.

3.1 Modified policy function iteration

Recall that in the one-sector growth model of Section 2, we constructed a locally consistent

chain for the capital process and solved the resulting system of equations using policy

function iteration. The algorithm converged in a small number of iterations, which is

unsurprising given that policy function iteration is known to converge locally at a quadratic

rate. However, the updating step in policy function iteration requires solving a linear system

of equations. The cost of this operation grows rapidly when the number of gridpoints

increases or the sparsity structure of the transition matrix becomes more complex, both of

which occur as the dimension of the problem grows.

Our first application will illustrate the benefits of employing the modified policy function

iteration algorithm of Puterman and Shin (1978). This algorithm generalizes value function

iteration by updating the value function a fixed number of times between successive updates

of the policy function. In this case convergence is known to occur only at a linear rate, and

so will typically require more iterations than policy function iteration. However, at no point

in the algorithm do we need to solve a linear system of equations. Further, we show that an

analogue of modified policy function iteration remains applicable even when the timestep

vanishes, and so is well suited to settings in which the state variable may change by a large

amount instantaneously, as is the case in problems in which one must choose consumption

in a fixed finite set. To the best of our knowledge, this generalized policy function iteration

is novel, and in practice appears quite useful in a wide range of applications.

We briefly recapitulate here the arguments and algorithms of Puterman and Brumelle

(1979) and Puterman and Shin (1978) in order to fix ideas and to explain our generalization.

Suppose we have a controlled finite-state Markov chain with state space S of cardinality |S|
and time increment ∆t ∈ R|S|, and that at each point x ∈ S the control u may assume values

in some subset U of Euclidean space, with the associated transition probabilities given by
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P : S2 × U → [0, 1]. As the preceding notation indicates, we allow for the possibility that

the time increment is state-dependent. The Bellman equation for a discrete-state problem

with flow payoff function f and discount rate e−ρ∆t(x) is

V (x) = max
u∈U

∆t(x)f(x, u) + e−ρ∆t(x)
∑
x′∈S

P (x, x′, u)V (x′) x ∈ S. (14)

Writing F (x, u) = ∆t(x)f(x, u) for all x ∈ S and u ∈ U , we can write this as

0 = max
û∈U |S|

F (û) + T (û)V =: B(V ) (15)

where T (û) := diag(β)P (û)− I for β(x) := e−ρ∆t(x) and the second equality in (15) defines

B. Policy function iteration is then the following.

Algorithm 1 (Policy function iteration). Choose an arbitrary control u0 and denote by V0

the associated value function. We then iterate as follows:

(i) Choose û0 to solve B(V0) = F (û0) + T (û0)V0.

(ii) Define V1 = −T (û0)
−1F (û0) as the value of adhering to û0 forever.

(iii) Replace V0 with V1 in Step (i) and repeat until convergence.

If we write û(V ) for the control that attains the maximum in (15) then the updating

rule in Step (ii) of Algorithm 1 may be written

Vn+1 = −T (û(Vn))
−1F (û(Vn)) = Vn − T (û(Vn))

−1B(Vn). (16)

Puterman and Brumelle (1979) show that policy function iteration is essentially an ab-

stract version of Newton’s method and inherits some of the same properties, such as rapid

(quadratic) convergence near the solution. However, as we noted earlier, the updating

step in policy function iteration requires the solution of a linear system of equations of a

size as large as the number of gridpoints. Computational time therefore grows rapidly as

one increases the grid size or dimension, motivating the search for alternatives to policy

function iteration. To this end, note that if we abbreviate ûn := û(Vn) then −T (ûn)
−1 =∑∞

j=0(diag(β)P (ûn))
j and (16) becomes Vn+1 = Vn+

∑∞
j=0(diag(β)P (ûn))

jB(Vn). Modified

policy function iteration simply truncates this sum at a finite integer k.

Algorithm 2 (Modified policy function iteration). Fix an initial guess V0 satisfyingB(V0) ≥
0. We then iterate as follows:

(i) Choose û0 to solve B(V0) = F (û0) + (diag(β)P (û0)− I)V0.
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(ii) Define

V1 = V0 +

k∑
j=0

(diag(β)P (û0))
jB(V0). (17)

(iii) Replace V0 with V1 in Step (i) and repeat until convergence.

Puterman and Shin (1978) show that for any integer k and initial guess V0 satisfying

B(V0) ≥ 0, the sequence of iterates (Vn)
∞
n=1 produced by Algorithm 2 converges monotoni-

cally to the solution to the equation B(V ) = 0. The case k = 0 in Algorithm 2 corresponds

to value function iteration, while policy function iteration in Algorithm 1 arises as we take

the limit k → ∞. Also note that we can always find an initial guess V0 satisfying B(V0) ≥ 0

by setting V0 = −T (u0)
−1F (u0) for an arbitrary policy u0.

3.2 Generalized policy function iteration

Both Algorithm 1 and Algorithm 2 approximated a root of the function B defined in equa-

tion (15) in which T (û) := diag(β)P (û) − I for some discount parameter β and transition

matrix P . For these choices of B and T , the process by which the two algorithms updated

the value function could be written as

V1 = V0 +
k∑

j=0

(I + T (û0))
jB(V0) (18)

without any explicit reference to the underlying Markov chain. Now note that both the

root of equation (15) and the control that attains the maximum on the right-hand side are

unaffected if we scale F and T state-by-state. This suggests the possibility of designing

analogues of Algorithm 2 for scaled versions of equation (15). Such transformations will

not affect Algorithm 1 (since scaling a linear system leaves the solution unaffected) but will

affect the updating step (18) for finite k.6 One benefit of this generalization is that it will

allow us to apply an analogue of Algorithm 2 to an operator similar to that employed in

the implicit finite-difference method of Achdou et al. (2022).

We now suppose that we wish to find a solution to an equation of the form (15), where

T is no longer necessarily of the form diag(β)P − I for some transition probability P and

vector β. Given a normalizing function C : S×U |S| → R, we can define a generalized policy

function iteration algorithm as follows.

Algorithm 3 (Generalized policy function iteration). Fix an initial guess V0 satisfying

B(V0) ≥ 0. We then iterate as follows:

6The possibility of applying a version of the above algorithm to more general operators than those of
the form T = βP − I is mentioned on page 64 of Puterman and Brumelle (1979). We unfortunately cannot
access the references that elaborate on this point.
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(i) Choose û0 to solve B(V0) = F (û0) + T (û0)V0.

(ii) Define

V1 = V0 +
k∑

j=0

(I + T̃ (û0))
jB̃(V0) (19)

where T̃ (û0)(x, x
′) := T (û0)(x, x

′)/C(x, û0) and B̃(V0)(x) := B(V0)/C(x, û0) for all

x, x′ ∈ S.

(iii) Replace V0 with V1 in Step (i) and repeat until convergence.

As the following shows, the normalizing function may be chosen so that the resulting

algorithm retains the attractive monotonicity properties derived by Puterman and Shin

(1978) in the discounted Markovian case.

Lemma 7. If the function C is chosen such that I + T̃ (ûn) ≥ 0 for all n ≥ 0, then the

sequence defined by (19) is monotone increasing if B(V0) ≥ 0.

Proof. For any V,W ∈ R|S| we have B(W ) = maxû∈U |S| F (û) + T (û)W ≥ F (û(V )) +

T (û(V ))W and so B(W ) ≥ B(V ) + T (û(V ))(W − V ). It follows that for any n ≥ 1 and

(V,W ) = (Vn, Vn+1) we have

B(Vn+1) ≥ B(Vn) + T (ûn)(Vn+1 − Vn)

= B(Vn) + T (ûn)

k∑
j=0

(I + T̃ (ûn))
jB̃(Vn)

= (I + T̃ (ûn))
k+1B(Vn) ≥ 0.

Since I + T̃ (ûn) ≥ 0, this shows that B(Vn) ≥ 0 implies B(Vn+1) ≥ 0 for all n ≥ 0, from

which the conclusion follows.

Note that we can always find an initial guess V0 satisfying B(V0) ≥ 0 by setting V0 =

−T (u0)
−1F (u0) for an arbitrary policy u0. In what follows, for each n ≥ 0 we will simply

choose C(·, ûn) to be the least value such that I + T̃ (ûn)(x, x
′) ≥ 0 for all x, x′ ∈ S. To

illustrate one important application of Algorithm 3 that we will employ in our examples,

let F (x, u) = f(x, u) and define

T (û) = lim
∆t→0

1

∆t
(e−ρ∆tP (û,∆t)− I) (20)

where P (·,∆t) : U
|S| → R|S|×|S| denote the transition probability functions arising from a

discretization using the MCA method with constant timestep ∆t. As we noted in Section

2, this operator in (20) often coincides with that appearing in the implicit finite-difference
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method of Achdou et al. (2022). In this case, Algorithm 3 is effectively constructing a

particular approximation to T (û)−1 in such a way as to guarantee the monotonicity (and

hence convergence) of the iterates, without needing to ever directly solve a linear system.

3.3 Non-durable consumption

We first consider the problem of an infinitely lived agent who faces idiosyncratic income

risk and may save in a risk-free bond. As emphasized by Achdou et al. (2022), this is a

natural application for an economist, as such problems are an integral component of Bewley-

Huggett-Aiyagari incomplete markets models, which form the backbone of much of modern

macroeconomics. Suppose that preferences over consumption are given by

U(c) = E

[
ρ

∫ ∞

0
e−ρt c

1−γ
t

1− γ
dt

]
(21)

and that wealth evolves according to

dat = [rat − ct + yt]dt (22)

where r > 0 is fixed and (yt)t≥0 denotes the income of the agent. We also assume that the

agent faces a borrowing constraint of the form at ≥ a for all t ≥ 0 and some a, where for

simplicity in what follows we assume a = 0, so that the agent is unable to borrow. The

state-dependence of the constraint set means that this problem does not technically fit into

the framework of Section 2.2. However, for simplicity we proceed as if the agent receives

a large negative payoff from leaving the prescribed state space. We assume yt = ezt where

zt := z1t + z2t for z1 and z2 satisfying

dzit = −θizitdt+ σidZit (23)

for i = 1, 2, where Z := (Z1t, Z2t)t≥0 is two-dimensional Brownian motion. We introduce two

income shocks simply to illustrate the benefits of departing from policy function iteration

when the grid grows large, but one can imagine such a problem arising when one wishes

to model, e.g., consumer behavior in the presence of both persistent and transitory shocks.

When approximating (23) we assume the volatility vanishes near the boundary, but omit

this from the notation for brevity. Since income is bounded, there is no loss in assuming

that both assets and consumption must be bounded, so that Assumption 1 is satisfied.

To construct our chain we must specify the state space, the transition probabilities, and

the (possibly state-dependent) timestep. Write a for the maximum level of wealth in the

discretization, and z1, z1, z2 and z2 for the lower and upper bounds for the income processes.
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For a vector of integers N = (Na, N1, N2), define the state increments

(∆a,∆1,∆2) = ((a− a)/Na, (z1 − z1)/N1, (z2 − z2)/N2)

and the individual grids Sa = {a + ∆a, . . . , a − ∆a} and Si = {zi + ∆i, . . . , zi − ∆i}
for i ∈ {1, 2} and define the state space Sh := Sa × S1 × S2. We choose our transition

probabilities so that if the chain is at point x := (a, z1, z2) ∈ Sh at time t then the possible

values at time t+∆t lie in the set

∆(x) := {(a, z1, z2), (a±∆a, z1, z2), (a, z1 ±∆1, z2), (a, z1, z2 ±∆2)} .

One may check that the following defines a locally consistent chain for any c,

p(a±∆a, z1, z2) =
∆t

∆a
[ra− c+ ez1+z2 ]±

p(a, z1 ±∆1, z2) =
∆t

∆2
1

(
σ2
1

2
χ1(z1) + ∆1[−θ1z1]

±
)

p(a, z1, z2 ±∆2) =
∆t

∆2
2

(
σ2
2

2
χ2(z2) + ∆2[−θ2z2]

±
) (24)

where χi(zi) := 1zi /∈{zi+∆i,zi−∆i} and i = 1, 2, provided these quantities lie in the unit

interval. The borrowing constraint is imposed by requiring c ≤ ra + y when a = a + ∆a.

To ensure that the process remains on the grid, we impose c ≥ ra+ y for a = a−∆a.
7 The

Bellman equation is then

V (x) = max
c≥0

∆t
c1−γ

1− γ
+ e−ρ∆tE[V (x′)] (25)

for all x ∈ Sh. Optimal consumption solves

max
c≥0

c1−γ

1− γ
+ e−ρ∆t

(
[ra− c+ ez1+z2 ]+V a

F − [ra− c+ ez1+z2 ]−V a
B

)
which again requires no non-linear root-finding.

Numerical illustration: We now compare computational times for the algorithms in

Section 3.1 for a fixed set of parameters. To the extent possible we adopt the parameters of

Appendix F in Achdou et al. (2022), who consider a two-dimensional problem and compare

the performance of their implicit finite-difference scheme with the endogenous grid method

of Carroll (2006). Arguments analogous to those provided for the one-sector neoclassical

growth model in Section 2 reveal that the implicit finite-difference method of Achdou et al.

7Note, however, that for a sufficiently large upper limit this will not bind.
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(2022) is asymptotically equivalent to using policy function iteration for the probabilities

(24) as the timestep vanishes. To contrast the approach adopted in this paper with that of

Achdou et al. (2022), we therefore compare policy function iteration with the algorithms of

Section 3.1.

Following Achdou et al. (2022) we fix γ = 2, r = 0.03, and ρ ≈ 0.0526, corresponding

to a discrete-time discount parameter of β = 0.95. With a single income state variable

Achdou et al. (2022) target an annual autocorrelation of 0.95, which implies that θ =

− ln(0.95) ≈ 0.0513. Since the stationary solution to (23) is Gaussian with mean zero and

variance ν2 := σ2/(2θ), their choice of ν = 0.2 implies that σ ≈ 0.064. To illustrate the

effect of changing the sparsity structure of the transition matrix on the performance of

different methods, we consider two choices for the income process. In each case we choose

the parameters of Achdou et al. (2022) for the first component of income. In the first case

we set z2 = 0 so that the problem becomes two-dimensional, while in the second we choose

(θ2, σ2) = (θ1, σ1). For each choice we solve the above problem using the modified and

generalized modified policy function iteration algorithms of Section 3.1 for a number of grid

sizes and relaxation steps. In the former case we must also specify a timestep with the

property that the probabilities in (24) remain bounded within the unit interval. This can

be found either by experimentation or by imposing a priori bounds on consumption and

checking ex-post that they do not bind. To understand the latter approach, note that the

transition probabilities defined in (24) will lie within the unit interval at a point (a, z1, z2)

if

∆t

(
|ra− c+ ez1+z2 |/∆a + σ2

1/∆
2
1 + |θ1z1|/∆1 + σ2

2/∆
2
2 + |θ2z2|/∆2

)
< 1.

If we impose the requirement that c ∈ [0, κ(ra+ ez1+z2)] for some κ ≥ 2 and all (a, z1, z2),

then it will suffice to choose a timestep no greater than the (grid-dependent) upper bound

∆t(κ) :=
(
(κ− 1)|ra+ ez1+z2 |/∆a + σ2

1/∆
2
1 + |θ1z1|/∆1 + σ2

2/∆
2
2 + |θ2z2|/∆2

)−1
.

In our numerical experiments, we will conjecture (and verify ex-post) that consumption

never exceeds two times interest and labor income, and so use the above ∆t(κ) with κ = 2.

It is possible to experiment with choices of the timestep that ensure more rapid convergence,

but doing so may lead the above expressions for probabilities to lie outside the unit interval.

Note that this experimentation is unnecessary in the case of generalized modified policy

function iteration, in which the timestep has been sent to zero, and it is for this reason that

we record the output of both exercises. When implementing the generalized modified policy

function iteration of Section 3.1, we choose our normalizing constant C at each iteration to

be the least value necessary in order to ensure the non-negativity of I + T̃ everywhere.
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We now record the speed of convergence for policy function iteration (recall this is

the implicit method of Achdou et al. (2022) for ∆t = ∞), value function iteration, and

modified value function iteration with k = {10, 50, 100}, grids chosen to encompass four

standard deviations in each dimension of log income, and a tolerance between successive

iterations in the supremum norm of 10−6. In order to make an apples-to-apples comparison

across algorithms the initial guess is always the value function associated with zero net

savings. All figures are in seconds and are the average of ten runs, and the updating

step in the policy function iteration was conducted using the standard scipy sparse solver

(scipy.sparse.linalg.spsolve) in Python on an Intel Core i7-8650U processor. Table 1 gives

the time until convergence in seconds for both modified and generalized policy function

iteration in two dimensions.

PFI VFI k = 10 k = 50 k = 100 k = 200
Grid size

(200, 10) 0.037 3.681 0.417 0.120 0.076 0.063
(300, 15) 0.080 8.774 0.986 0.285 0.189 0.156
(400, 20) 0.142 15.806 1.792 0.533 0.354 0.284
(500, 25) 0.274 32.265 3.635 1.070 0.690 0.526

Table 1: Time until convergence for 2D problem: MPFI

PFI k = 0 k = 10 k = 50 k = 100 k = 200
Grid size

(200, 10) 0.045 1.363 0.148 0.059 0.053 0.057
(300, 15) 0.097 3.690 0.388 0.138 0.109 0.105
(400, 20) 0.172 7.869 0.813 0.251 0.211 0.189
(500, 25) 0.329 15.594 1.598 0.498 0.362 0.350

Table 2: Time until convergence for 2D problem: Generalized MPFI

In this example there is no gain from departing from policy function iteration. In

contrast, Table 3 repeats this exercise for a three-dimensional problem. For the third and

fourth choices of grids, modified policy function iteration is faster than policy function

iteration. Table 4 gives the analogous results for the case of generalized modified policy

function iteration.
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PFI VFI k = 10 k = 50 k = 100 k = 200
Grid size

(45, 15, 15) 0.762 7.410 0.847 0.249 0.195 0.158
(60, 20, 20) 4.828 23.362 2.652 0.797 0.540 0.420
(75, 25, 25) 20.045 58.819 6.635 1.944 1.237 1.088
(90, 30, 30) 68.306 110.348 12.535 3.757 2.432 2.062

Table 3: Time until convergence for 3D problem: MPFI

PFI k = 0 k = 10 k = 50 k = 100 k = 200
Grid size

(45, 15, 15) 0.902 9.763 1.103 0.363 0.281 0.330
(60, 20, 20) 4.924 33.238 3.650 1.136 0.868 0.722
(75, 25, 25) 21.632 94.989 10.582 2.956 1.997 1.752
(90, 30, 30) 67.251 203.795 22.390 6.432 4.112 3.398

Table 4: Time until convergence for 3D problem: Generalized MPFI

Obviously, absolute (rather than relative) running times depend on the operating system

and are potentially subject to substantial idiosyncratic variation. However, in light of the

results in Table 3 and Table 4, we believe we are being conservative when we state that the

change in solution methods can reduce computational times by an order of magnitude.

It is worth emphasizing that the generalized modified policy function iteration has the

advantage that one need not worry about the timestep being chosen such that the probabili-

ties lie in the unit interval, which in more general settings than the above may be non-trivial

to ensure. As a result, it does not appear that one approach is always better than the other

and we believe both to be of interest.

3.4 Durable consumption and discrete choice

One interesting property of the generalized modified policy function iteration given in Sec-

tion 3.1 is that it remains applicable even as the timestep vanishes. This is useful for

discrete-choice models in which there are large and instantaneous changes in wealth. To

illustrate, we now consider a variation of the problem of Section 3.3 in which the agent

has preferences over non-durable consumption that may assume a continuum of values,

as well as a durable good that may assume only finitely many values. This is similar to

a continuous-time version of the model of Fella (2014), who extends the endogenous grid

method of Carroll (2006) to allow for both adjustment costs and discrete choices. The
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MCA method may be applied to this case without any delicate choices of grids or any need

for interpolation of the function. In this case the amount by which wealth changes upon

purchase of the durable good does not vanish as the size of the grid tends to zero, and

so we are not able to restrict attention to adjacent transitions. However, as we shall see,

this causes no major difficulties, as the optimal policy in the updating step still admits a

closed-form expression.

We assume that the agent has preferences over non-durable and durable consumption

represented by the function

U(c,D) := E
[
ρ

∫ ∞

0
e−ρtu(ct, Dt)dt

]
(26)

for some u and denote the values of durable consumption by SD := {D,D +∆D, . . . , D +

ND∆D} for some D,ND and ∆D. Note that in contrast with the case of non-durable

consumption, this grid SD is a primitive of the problem, and not a choice made in the

discretization.

As in Section 3.3 we suppose that income is of the form yt = ezt for some mean-reverting

(zt)t≥0, and model the choice of the durable good as follows. At any instant the agent makes

a binary choice indicating whether she wishes to change the durable good. For simplicity,

we assume that the agent may only purchase (and not sell) the durable good. Further,

the opportunities to change the durable good are assumed to only arrive stochastically at

some constant rate λ > 0. As λ → ∞ this approximates a situation in which the durable

good may change instantaneously. If p denotes the price of the durable good, then for some

constants θ and σ the laws of motion for assets, log income, and durable consumption are

dat = [rat + ezt − ct]dt+ dJ1t(uJt)

dzt = −θztdt+ σdZt + dJ2t(uJt)

dDt = dJ3t(uJt)

(27)

where (Jt)t≥0 = (J1t, J2t, J3t)t≥0 is a process of the form (13), with uJt ∈ {0, 1} a control

indicating a desired increase in the durable good and the jumps are qt(0) = (0, 0, 0) and

qt(1) = (−p∆D, 0,∆D). The formulation in (27) implicitly assumes that the agent may

only change durable consumption by one unit at a time. However, if we choose λ to be a

large number this approximates a situation in which the agent is unrestricted in her choice.

As discussed in Section 2.2, to construct an approximating Markov chain for this jump-

diffusion process, we treat the diffusion and jump components separately. We first define

the discretized problem for a positive timestep before considering operators that arise in

the limit as we send the timestep to zero, as per the discussion following Lemma 7.

First, define the discrete grid S := Sa×Sz ×SD, where Sa := {a+∆a, . . . , a−∆a} and
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Sz := {z + ∆z, . . . , z −∆z} for some integers Na, Nz ≥ 1 and bounds a, a, z and z, where

(∆a,∆z) := ((a−a)/Na, (z−z)/Nz). To ensure that income remains on the grid, we impose

p∆D = K∆a for some integer K ≥ 1. We first define the transition probabilities for wealth

and income,

p(a±∆a, z,D) =
∆t

∆a
[ra+ ez − c]±

p(a, z ±∆z, D) =
∆t

∆2
z

(
σ2

2
χ(z) + ∆z[−θz]±

)
where χ(z) := 1z /∈{z+∆z ,z−∆z} and define the transitions for the durable good

p(a− p∆D, z,D +∆D) = λ1uJt=1∆t.

The Bellman equation is then 0 = maxc,uJ u(c,D) + T (c, uJ ; ∆t)V , where

T (c, uJ ; ∆t)V =
1

∆t

(
e−ρ∆tE[V (a′, z′, D′)]− V (a, z,D)

)
and the optimal policy for the durable good is uJ = 1V (a−p∆D,z,D+∆D)>V (a,z,D). For our

example we follow Fella (2014) and assume preferences of the form u(c,D) = ln c+η ln(D+

ι) for some η, ι > 0, so that the problem of finding optimal consumption is identical to

the problem in Section 3 with γ = 1. We now define T̃ (c, uJ) = lim∆t→0 T (c, uJ ; ∆t).

Simplification gives

T̃ (c, uJ)V =
1

∆a
[ra+ ez − c]+[V (a+∆a, z,D)− V (a, z,D)]

+
1

∆a
[ra+ ez − c]−[V (a−∆a, z,D)− V (a, z,D)]

+
1

∆2
z

(
σ2

2
χ(z) + ∆z[−θz]+

)
[V (a, z +∆z, D)− V (a, z,D)]

+
1

∆2
z

(
σ2

2
χ(z) + ∆z[−θz]−

)
[V (a, z −∆z, D)− V (a, z,D)]

+ λ(V (a+ qa(uJ), z + qz(uJ), D + qD(uJ))− V (a, z,D))− ρV (a, z,D)

(28)

where we have used the notation q = (qa, qz, qD) for the jumps. Finally, when implementing

the generalized modified policy function iteration of Section 3.1, we again choose our nor-

malizing function C to be the least value necessary in order to ensure the non-negativity of

I + T̃ pointwise throughout the iterative process.

Numerical illustration: For simplicity we retain the same parameters for the income

process as in Section 3. Our preferences are of the form used on page 339 of Fella (2014)

and are ordinally equivalent to η = 1/0.77− 1. We also follow Fella (2014) in our choice of
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PFI k = 0 k = 10 k = 50 k = 100 k = 200
Grid size

(50, 10, 10) 0.237 1.061 0.137 0.118 0.130 0.154
(100, 20, 10) 1.974 9.157 0.982 0.481 0.519 0.610
(150, 30, 10) 8.178 35.887 3.883 1.210 1.293 1.524
(200, 40, 10) 22.962 87.559 9.347 2.554 2.373 2.797
(250, 50, 10) 45.126 184.858 19.771 5.429 3.683 4.381

Table 5: Time until convergence for durable consumption problem: Generalized MPFI

interest rate r = 0.06, discount parameter ρ = − ln(0.93), and ι = 0.01 and set the upper

bound for durable consumption to be roughly 10 times the unconditional average of income.

For simplicity we set p = 1. Finally, for the arrival rate of the jumps we choose λ = 52,

which may be interpreted as the assumption that when the agent elects to purchase a unit

of the durable good, it takes on average roughly a week for the transaction to go ahead.

Table 5 gives the average time until convergence for ten runs of the generalized modi-

fied policy function iteration, with a tolerance in the supremum norm between successive

iterations of 10−6. The initial guess is always the value function associated with zero net

savings and no purchase of the durable good. The speed gains from departing from policy

function iteration appear lower here than for the case with non-durable consumption with

two income shocks (although they are still substantial). We suspect that this is because the

infrequency of the durable good purchases implies that the updating matrix is more sparse,

which reduces the computational cost of using a direct solver for policy function iteration.

Figure 2 plots slices of the policy function for non-durable consumption together with a

slice of the value function, and Figure 3 plots the change in durable consumption at several

values of the durable good.
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Figure 2: Slices of non-durable consumption and value function
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Figure 3: Slices of durable consumption policy function

Non-durable consumption appears to be increasing everywhere in the state space, except

for small regions in which the agent wishes to increase their durable consumption. At these

points, it appears that an increase in wealth and income may lead to a decrease in non-

durable consumption, as the agent anticipates a “large” purchase of the durable good.

However, we emphasize once again that this lack of monotonicity of the policy function

causes no difficulties for the algorithm, as the policy functions at each stage of the iteration

remain given in closed-form.

4 Portfolio problems and financial frictions

This section considers a general equilibrium model with financial frictions in the spirit of

Brunnermeier and Sannikov (2014). To illustrate the flexibility of the MCA approach, we

allow for time-varying volatility correlated with aggregate (depreciation) shocks. A grow-

ing number of models in the macrofinance literature possess such high correlation, posing

difficulties for the construction of locally consistent chains. Section 4.1 outlines the environ-

ment; Section 4.2 describes how to construct locally consistent chains with high correlation

among state variables; and Section 4.3 compares two algorithms for approximating compet-

itive equilibria.

4.1 Setup

Agents may be one of two types, indexed i ∈ {E,H}, and referred to as experts and

households, respectively. There is a unit mass of each type indexed by j ∈ [0, 1]. Both types

of agents are infinitely lived with the same flow utility function but differ in their discount
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rates, with preferences over sequences of consumption of the form

Ui(c) = E

[
ρi

∫ ∞

0
e−ρit

c1−γ
t

1− γ
dt

]

for some ρH , ρE > 0 with ρE > ρH and γ ∈ (0, 1). Aggregate capital in the economy at

time t ≥ 0 is denoted kt, and the amount held by the jth agent of type i is denoted kjit.

When the jth agent of type i invests a (possibly negative) fraction ιjit of her capital in new

capital, the flow of output minus investment is (Πi − ιjit)k
j
itdt and the law of motion of her

capital stock is

dkjit = ιjitk
j
itdt+ σtk

j
itdZt (29)

where Z = (Zt)t≥0 is a Brownian motion common to all agents. The increments of the

Brownian motion in (29) may then be thought of as representing stochastic depreciation

shocks. The parameters ΠE and ΠH are exogenous and assumed to satisfy ΠE > ΠH .

Together with above assumption ρE > ρH , we are therefore assuming that experts are more

productive but also more impatient, which will ensure that they do not ultimately own

all of the wealth in the economy. The linearity in the investment production technology

implies that the price of capital is constant (and here is unity). The volatility (σt)t≥0 evolves

according to

dσt = θ(σ − σt)dt+ σσdZt (30)

for some positive θ, σ and σσ, where the Brownian motions in (29) and (30) coincide.

Agents may trade a risk-free bond in zero net supply with (endogenously determined) return

denoted (rt)t≥0. We also assume that agents have access to a risk-free storage technology

with exogenous and constant real return r. An agent with wealth at must choose capital

kt, bond bt and storage ht holdings satisfying kt + bt + ht = at. We assume that wealth,

consumption, capital and storage holdings are non-negative, but that bond holdings may

assume either sign. We then have the following definition.

Definition 8. Given a process for the interest rate (rt)t≥0, the problem of an agent of type

i ∈ {E,H} at time t ≥ 0 with state (a, σ) is

Vit(a, σ) = max
(cτ ,hτ ,kτ )τ≥t

E

[
ρi

∫ ∞

t
e−ρi(τ−t) c

1−γ
τ

1− γ
dτ

]
daτ = [rτaτ + (r − rτ )hτ − cτ + (Πi − rτ )kτ ]dτ + στkτdZτ

dστ = θ(σ − στ )dτ + σσdZτ

(at, σt) = (a, σ)

aτ , cτ , hτ , kτ ≥ 0.

(31)
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The homotheticity of utility and the log-linearity of the law of motion for wealth to-

gether imply the following lemma, which motivates our subsequent search for a recursive

formulation of the problem.

Lemma 9 (Homogeneity). For any process (rt)t≥0 and i ∈ {E,W} there exist processes

(V it)t≥0 and (cit, hit, kit)t≥0 such that Vit(a, σ) = V it(σ)a
1−γ/(1−γ) and cit(a, σ) = cit(σ)a, hit(a, σ) =

hit(σ)a and kit(a, σ) = kit(σ)a, respectively, for all t, a, σ ≥ 0.

In what follows we abuse notation slightly and write Vi for V i. Using the linearity of

policy functions in Lemma 9, aggregate consumption, storage and capital demand may be

written as functions of policy functions and the wealth share of experts,

xt :=

∫ 1
0 ajEtdj∫ 1

0 ajEtdj +
∫ 1
0 ajHtdj

. (32)

Appendix B.2 shows that the wealth share evolves according to a diffusion process of the

form dxt = µx(xt, σt)xtdt + σx(xt, σt)xtdZt for some µx and σx depending on the policy

functions of each agent. We therefore focus on Markov equilibria in which equilibrium

quantities are functions only of (x, σ).

Definition 10. For any functions r, µx and σx, state (a, x, σ) and i ∈ {E,W}, the problem
of the ith type of agent may be written

Wi(a, x, σ) = max
(ct,ht,kt)t≥0

E
[∫ ∞

0
ρie

−ρit
(ctat)

1−γ

1− γ

]
dt

dat = [r(xt, σt) + (r − r(xt, σt))ht − ct]atdt+ ktatdRt

dxt = µx(xt, σt)xtdt+ σx(xt, σt)xtdZt

dσt = θ(σ − σt)dt+ σσdZt

(a0, x0, σ0) = (a, x, σ)

at, ct, ht, kt ≥ 0

where dRt = (Πi − r(xt, σt))dt+ σtdZt.

Lemma 9 implies that the value functions for type i ∈ {E,H} assume the form Vi(x, σ)a
1−γ/(1−

γ) for some function Vi, with associated policy functions of the form
(
ci(x, σ)a, hi(x, σ)a, ki(x, σ)a

)
for all (a, x, σ).

Definition 11 (Markov equilibrium). A Markov equilibrium consists of functions for the

risk-free rate and drift and diffusion for the wealth share, together with value functions Vi

and policy functions (ci, hi, ki) for i ∈ {E,H} solving the problem in Definition 10, such
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that the bond market clears,

0 =
(
1− kE(x, σ)− hE(x, σ)

)
x+

(
1− kH(x, σ)− hH(x, σ)

)
[1− x]

for all (x, σ), and the law of motion for the wealth share is consistent with individual policy

functions.

The presence of the storage technology implies that we cannot have r < r, for this would

imply the existence of an arbitrage opportunity by borrowing the bond and employing the

storage technology. We may therefore focus (without loss) on the case r ≥ r and omit

storage choice from the agent’s problems.8 We assume for simplicity that households are

unproductive with capital, so that ΠH < r, and also assume that ΠE > r to rule out the

trivial case in which only the storage technology is utilized. Given the policy functions

in the Markov equilibrium, investment may then be determined residually from the goods

market clearing condition

cE(x, σ)x+ cH(x, σ)(1− x) = [ΠE − ιE ]kE(x, σ)x+ [hE(x, σ)x+ hH(x, σ)(1− x)]r. (33)

4.2 Chain construction with high correlation

We first explain how to solve the individual problem in Definition 10. This poses some

difficulties, as standard constructions fail to work when there is high correlation between

state variables. To see why, suppose that (Xt)t≥0 is a two-dimensional process satisfying

dXt = µ(Xt)dt+σ(Xt)dZt where µ : R2 → R2, σ : R2 → R2×m and (Zt)t≥0 ism-dimensional

Brownian motion. Now define coefficients aij(X) = (σσT )ij for i, j = 1, 2. Suppose that µ

and σ vanish outside of some domain [−M,M ]2, and set S := S1 × S2 where S1 and S2 are

uniform grids with increments ∆1 and ∆2, respectively. Denote an arbitrary element of S

by x = (x1, x2) and consider a Markov chain such that if the chain is at point x at time t,

then the possible values at time t+∆t are

∆(x) := {(x1, x2), (x1 ±∆1, x2), (x1, x2 ±∆2), (x1 ±∆1, x2 ±∆2), (x1 ±∆1, x2 ∓∆2)}.

It is easy to check that if for i = 1, 2 we have

aii −
∑
j ̸=i

|aij |∆i/∆j ≥ 0, (34)

8This does not mean storage is irrelevant as it may be utilized in equilibrium if r = r. However, the
choice of storage will be indeterminate if r = r and zero otherwise and so may be omitted from the agent’s
problem. The presence of the storage technology just puts a lower bound on r.
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everywhere, then for sufficiently small ∆t > 0 the probabilities

p(x1 ±∆1, x2) =
∆t

∆2
1

(
1

2
[a11 − |a12|∆1/∆2] + ∆1µ

±
1

)
p(x1, x2 ±∆2) =

∆t

∆2
2

(
1

2
[a22 − |a12|∆2/∆1] + ∆2µ

±
2

)
p(x1 ±∆1, x2 ±∆2) =

∆t

∆1∆2

1

2
a+12

p(x1 ±∆1, x2 ∓∆2) =
∆t

∆1∆2

1

2
a−12

define a locally consistent chain. Relative to the uncorrelated case, this procedure removes

some mass from the left/right/up/down transitions and adds it to the diagonal elements.

However, the above construction will fail to work whenever (34) fails for some point in the

domain, since the expressions for probabilities may be negative, leading to the inapplicability

of standard dynamic programming arguments. Indeed, in this case it may be impossible

to satisfy the local consistency requirements using only local transitions. To illustrate,

consider a drift-free diffusion process of the form (dx1t, dx2t) = (σ1(x)dZt, σ2(x)dZt) for

some functions σ1 and σ2, where (Zt)t≥0 is one-dimensional Brownian motion. In this case

we have [
a11 a12

a21 a22

]
=

[
σ2
1 σ1σ2

σ1σ2 σ2
2

]
.

For the above expressions for probabilities to be non-negative we need σ1(x)
2/∆1 ≥ |σ1(x)σ2(x)|/∆2

and σ2(x)
2/∆2 ≥ |σ1(x)σ2(x)|/∆1. This is only true if |σ1(x)|/∆1 = |σ2(x)|/∆2 and so

cannot be assured to hold everywhere for arbitrary σ1 and σ2.
9 A different construction

is necessary, one that may call for non-local transitions. The remainder of this section is

devoted to this construction, explaining the general process before turning to the problem

in Definition 10.

We first illustrate the construction of a locally consistent chain for a drift-free process

of the form (dx1t, dx2t) = (σ1(x)dZt, σ2(x)dZt) on a domain of the form [0,M1] × [0,M2],

for functions σ1, σ2 and constants M1,M2 > 0.10 To this end, we fix integers N1, N2 ≥ 1

and define ∆i = Mi/Ni for i = 1, 2 and Sh = {∆1, . . . ,M1 − ∆1} × {∆2, . . . ,M2 − ∆2}.
We also write (σ1, σ2) := (σ1/∆1, σ2/∆2) and w := σ1/σ2. An arbitrary member of Sh is

of the form (i∆1, j∆2) for i ∈ {1, . . . , N1 − 1} and j ∈ {1, . . . , N2 − 1}. In constructing

our chain we consider two cases that differ in the number of possible transitions. First, we

9Note that if σ1 and σ2 are constant then it is always possible to do this by appropriately adjusting the
step sizes in each dimension.

10This construction is based on Section 5.9 of Kushner and Dupuis (2001).
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suppose that at any (x1, x2) = (∆1i,∆2j) ∈ Sh, the transitions assume only three values,

so (∆x1,∆x2) ∈ {(0, 0),±(∆1m1,∆2m2)} for some non-negative integers (m1,m2). We

assume that the state may only leave the grid from a point adjacent to the boundary, and

that the number of increments the state may move cannot exceed a fixed integer m ≥ 1.

These two requirements translate into the restrictions

m1 ≤ min{m,min{i− 1, N1 − 1− i}}

m2 ≤ min{m,min{j − 1, N2 − 1− j}}.
(35)

The set of non-zero integer pairs satisfying (35) is denoted Γ(i, j). If the non-zero val-

ues occur with equal (possibly state-dependent) probability p ∈ (0, 1/2), then the mean

consistency requirement is satisfied and the covariance consistency requirements are

2p∆2
1m

2
1 = ∆t∆

2
1σ

2
1 + o(∆t)

2p∆1∆2m1m2 = ∆t∆1∆2σ1σ2 + o(∆t)

2p∆2
2m

2
2 = ∆t∆

2
2σ

2
2 + o(∆t).

(36)

First, note that if we can find a pair of integers (m1,m2) satisfying m2 = m1σ2/σ1, then

(36) will be satisfied with zero o terms if ∆t = 2pm2
1/σ

2
1 = 2pm2

2/σ
2
2. However, there may

exist no such integer pair. Geometrically, this corresponds to a situation in which a shock

to the diffusion process pushes the state in a direction in which there are no gridpoints. In

general we choose a non-zero integer pair (m1,m2) to minimize |m2 −m1σ2/σ1| and adjust

∆t on a case-by-case basis so that it is non-zero and that either the first or third requirement

in (36) holds: if m1 ≥ m2, set ∆t = 2pm2
1/σ

2
1 and if m2 > m1, set ∆t = 2pm2

2/σ
2
2.

Figure 4 depicts this process for |m| = 2, at a point located more than |m| points away
from the boundary of the grid. The slope of the line is σ2/σ1, the triangles and the square

represent the transitions satisfying (35), and the square represents the (m1,m2) selected.

This picture suggests that the approximation may be made more accurate by placing some

probability on the triangle on the other side of the cross. To formalize this, expand the

possible transitions to five points:

(∆x1,∆x2) ∈ {(0, 0),±(∆1m11,∆2m12),±(∆1m21,∆2m22)}

for some quadruple of integers (m11,m12,m21,m22) not all zero. For some p ∈ (0, 1/2),

we declare the probability of (∆x1,∆x2) ∈ {(∆1m11,∆2m12), (∆1m21,∆2m22)} equal to p,

and given a point (i∆1, j∆2) ∈ Sh and recalling w := σ1/σ2, define

(m11,m12) = argmin
{
|j′ − i′/w| | (i′, j′) ∈ Γ(i, j)

}
z = min(1, w)(m12 −m11/w).

(37)
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Figure 4: Optimal transition selection

The first pair of integers (m11,m12) will be the pair selected in the above three-point

approximation, while |z| may be interpreted as the distance between the two black dots

in Figure 4 (note that z may be positive or negative). The second point, (m21,m22), will

depend upon the signs of z and w − 1, as these determine whether the adjacent point lies

to the left, right, above, or below the original point, and may be summarized as

m21 = m11 + 1w≤1(2× 1z>0 − 1)

m22 = m12 + 1w>1(2× 1z≤0 − 1).
(38)

We place probability p(1−|z|) on (m11,m12) and p|z| on (m21,m22), and define the timestep

to be ∆t = ∆tp, where

∆t = 1w>1 × 2(m11)
2/σ2

1 + 1w≤1 × 2(m12)
2/σ2

2. (39)

The description of this five-point approximation is summarized as follows.

Algorithm 4 (Five-point approximation). Given a (possibly state-dependent) transition

probability p ∈ (0, 1/2), define an approximation to the process (dx1t, dx2t) = (σ1(xt)dZt, σ2(xt)dZt)

by declaring, for x ∈ Sh,

p(x1 ±m11∆1, x2 ±m12∆2) = p|z|

p(x1 ±m12∆1, x2 ±m22∆2) = p(1− |z|)

and p(x1, x2) = 1 − 2p, where z and m are chosen according to (37) and (38), and the
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timestep satisfies ∆t = ∆tp for ∆t given by (39). Two of the three local consistency

requirements may be satisfied exactly, and the remaining requirement has error equal to

2p∆(w)2|z|(1− |z|), where ∆(w) = 1w>1 ×∆2 + 1w≤1 ×∆1.

The proof of the claims within Algorithm 4 requires only elementary algebra. Further

details are given in Appendix B.1, and the accuracy of the above method is illustrated in the

context of linear-quadratic problems in Appendix A.2. In what follows we apply Algorithm

4 in which the timestep is chosen to be independent of the state.

We now outline two simplifications of the problem in Definition 10 before describing our

algorithm for competitive equilibria. Using Lemma 9 and denoting partial derivatives with

subscripts, the value function of each agent satisfies aW12(a, x, σ) = (1− γ)W2(a, x, σ) and

aW13(a, x, σ) = (1−γ)W3(a, x, σ). Substituting into the Hamilton-Jacobi-Bellman equation

of the agent gives

ρW = max
c,k≥0

ρ(ca)1−γ

1− γ
+
[
r − c+ (Π− r)k

]
aW1 +

σ2k
2

2
a2W11

+ [µxx+ σxxσk(1− γ)]W2 +
σ2
xx

2

2
W22

+ [θ(σ − σ) + σkσσ(1− γ)]W3 + σxxσσW23 +
σ2
σ

2
W33.

We now define yt := ln at and note that by Ito’s lemma we obtain a control problem with

state (y, x, σ), controls (c, k), flow payoffs ρc1−γe(1−γ)y/(1− γ) and law of motion

dyt =
(
r − ct + (Π− r)kt − σ2

t k
2
t /2
)
dt+ σtktdZ

(1)
t ,

dxt =
(
µx + σtσx(1− γ)kt

)
xtdt+ σxxtdZ

(2)
t ,

dσt =
(
θ(σ − σt) + σtσσ(1− γ)kt

)
dt+ σσdZ

(2)
t ,

(40)

where (Z(1), Z(2)) are now independent. Although this system is not the original one faced

by the agent, the above homogeneity arguments show that it leads to the same value func-

tion. This does not eliminate all correlation between the state variables and so we still

require non-local transitions. However, crucially, the diffusion terms of the states (x, σ)

exhibiting high correlation are not controlled by the agent, and so the non-local transitions

in Algorithm 4 depend only on prices and not the agent’s choices.

To solve (40), first define the infinite grid Sy = {. . . ,−∆y, 0,∆y, . . . } for log wealth, and

the finite grids Sx = {0,∆x, . . . , 1−∆x, 1} and Sσ = {Σ,Σ+∆σ, . . . ,Σ−∆σ,Σ} for x and σ,

where ∆x = (1−0)/Nx and ∆σ = (Σ−Σ)/Nσ, and define S = Sy×Sx×Sσ. To ensure that

the process remains on the grid, we alter (30) so that σσ vanishes at Σ and Σ. For clarity, we

write the transition probabilities as the sum of the transitions for individual wealth, and the
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drift and diffusion for the aggregate state, respectively, p(X ′) = p(1)(X ′)+p(2)(X ′)+p(3)(X ′)

for any X ′ = (y′, x′, σ′) ̸= X = (y, x, σ), with p(X) chosen such that probabilities sum to

unity. The transition probabilities are then

p(1)(y +∆y, x, σ) =
∆t

∆2
y

(
σ2k

2
/2 + ∆y

[
r + (Π− r)k

])
p(1)(y −∆y, x, σ) =

∆t

∆2
y

(
σ2k

2
/2 + ∆y

[
c+ σ2k

2
/2
])

p(2)(y, x±∆x, σ) =
∆t

∆x

(
[µxx]

± + [σxxσ(1− γ)kt]
±)

p(2)(y, x, σ ±∆σ) =
∆t

∆σ

(
[θ(σ − σ)]± + [σσσ(1− γ)kt]

±)
p(3)(y, x±m12∆x, σ ±m13∆σ) = p|z|

p(3)(y, x±m22∆x, σ ±m23∆σ) = p(1− |z|)

(41)

where the non-local transitions and timestep are given by Algorithm 4, and for simplicity

we assume that ∆t is independent of the state and adjust the variable p accordingly. Using

Lemma 9, the Bellman operator Bi(∆t,∆y) for type i ∈ {E,H} may be viewed as operating

on functions V : Sx × Sσ → R and given by

Bi(∆t,∆y)[V ](x, σ) = (1− γ) max
c,k≥0

∆tρiu(c) + e−ρi∆tE
[
V (x′, σ′)

1− γ
e(1−γ)(y′−y)

]
(42)

where the expectation operator on the right-hand side of (42) is with respect to the prob-

abilities defined in (41).11 For ease of notation, we write VEjD = 1γ<1VEjF + 1γ≥1VEjB,

where VEjF and VEjB denote forward and backward differences for the function VE in the

jth component, respectively.

4.3 Competitive equilibria

In this section we describe a pair of algorithms for computing competitive equilibria. Each

algorithm consists of two distinct parts:

(i) Updating equilibrium quantities: take the value functions as given, and find the

market-clearing interest rate and law of motion for the wealth share consistent with

continuation values.

(ii) Updating value functions: take prices, law of motion of wealth share, and current

guesses of the value functions as given, and update the value functions. For this step

we consider two possibilities:

11Also note that y′ − y on the right-hand side of (42) is independent of y.
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(a) Ignore the current guess of the value function and solve the stationary problem

given the interest rate and law of motion of the state variable.

(b) Compute the value function by assuming that next period the payoff will be

given by the current guess of the value function.

Following (ii)b leads to an algorithm similar to the iterative method employed in Brun-

nermeier and Sannikov (2016), while following (ii)a is our novel algorithm that exploits the

stationarity of the individual problem. We first describe (i). In deriving policy functions we

will assume that σx ≥ 0, and verify ex-post that this is indeed the case. For the transition

probabilities in Section 4.2, the policy functions are given in the following lemma, a proof

of which is contained in Appendix B.3, along with explicit expressions for the constants

E1, E2 and Ec.

Lemma 12. For i ∈ {E,H} consumption is given by ci = ρ
1/γ
i V

−1/γ
i eρi∆t/γEc and the

capital policy function for the expert is

k =
1

γσ2

(
E1E

−1
2 [Π− r] + E−1

2 σ(σxxVE1D + σσVE2D)/VE

)+
where E1, E2 and Ec depend only upon ∆y and tend to unity as ∆y → 0.

We now impose two requirements: the market for bonds clears and the law of motion

of the aggregate state is consistent with individual policy functions. Using Lemma 12, the

bond market-clearing condition becomes

1

γσ2

(
E1E

−1
2 (Π− r) + E−1

2 σ(σxxVE1D + σσVE2D)/VE

)+
x ≤ 1 (43)

with equality if r > r. Note the inequality in (43) may be strict if the storage technology is

utilized in equilibrium. The left-hand side of (43) is decreasing in r so there are two cases:

if k(r)x ≤ 1 then r = r; otherwise r solves k(r)x = 1. Rearranging gives

r = max
{
r,Π+ E−1

1 σ(σxxVE1D + σσVE2D)/VE − (E1/E2)
−1γσ2/x

}
. (44)

Substituting (44) into the expression for capital in Lemma 12 gives

k = min

{
1

γσ2

(
E1E

−1
2 (Π− r) + E−1

2 σ(σxxVE1D + σσVE2D)/VE

)
,
1

x

}+

. (45)

Expressions (44) and (45) give the risk-free rate and capital policy function consistent

with bond market-clearing. Imposing consistency between individual and aggregate laws of

motion then gives the following.
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Lemma 13. If VE1D ≤ 0 everywhere, then the volatility of the wealth share consistent with

individual optimization is given by

σxx = σx(1− x)min

{
(E1/E2)[Π− r]/σ2 + σσVE2D/[σE2VE ]

γ − x(1− x)VE1D/[E2VE ]
, 1/x

}+

. (46)

For this volatility, the interest rate is (44) and the drift in the wealth share is

µxx = x(1− x)
[(

(ρH/VH)1/γeρH∆t/γ − (ρE/VE)
1/γeρE∆t/γ

)
Ec + (Π− r)k − σ2k

2
x
]

where k is given by (45) and ∆t is constructed using σx following Algorithm 4.

Rearranging the discrete Bellman equation (42) for type i ∈ {E,H} and dividing by the

timestep gives an equation of the form 0 = maxc,k ρiu(c)+Ti(c, k; ∆t,∆y)V for the operator

Ti given by

Ti(c, k; ∆t,∆y)V (x, σ) =
1

∆t

(
e−ρi∆tE

[
V (x′, σ′)

1− γ
e(1−γ)(y′−y)

]
− V (x, σ)

1− γ

)
, (47)

As in Section 2, it is convenient to note that lim∆t,∆y→0 T (c, k; ∆t,∆y) → T (c, k) for some

well-defined operator T , given explicitly in Lemma 17. We may now describe the two

equilibrium algorithms.

Algorithm 5 (False transient approach). Given a guess {r, µx, σx} for the interest rate and

law of motion of the wealth share, and a guess for the value functions {VE , VH}:

(i) update the value functions using the Bellman operators in (42);

(ii) calculate the risk-free rate and law of motion of the wealth share using Lemma 13;

(iii) return to Step (i) with the new interest rate, law of motion of the wealth share, and

value functions and repeat until convergence.

Algorithm 6 (Policy iteration approach). Given a guess {r, µx, σx} for the interest rate

and law of motion of the wealth share:

(i) solve 0 = maxc,k ρiu(c) + T i(c, k; ∆t,∆y)V using policy function iteration;

(ii) calculate the interest rate and law of motion of the wealth share using Lemma 13;

(iii) return to Step (i) with the new interest rate and law of motion of the wealth share,

and repeat until convergence.

Before turning to a numerical illustration and comparison of Algorithm 5 and Algorithm

6 we note that in this environment there exists a convenient initial guess of equilibrium
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quantities. As γ → 1 one may check that VE , VH → 1 everywhere, with policy functions

satisfying (cE , cH) → (ρE , ρH) and k → min
{
[Π− r]/σ2, 1/x

}+
, respectively. The equilib-

rium interest rate is then r = max
{
r,Π− σ2/x

}
, and the law of motion of the wealth share

satisfies

(µxx, σxx) =
([

ρH − ρE + (Π− r)k − σ2xk
2
]
x(1− x), σx(1− x)k

)
.

For r = −∞ we obtain r = Π − σ2/x, µxx =
[
(ρH − ρE)x+ σ2(1/x− 1)

]
(1 − x) and

σxx = σ(1− x). In this case, as the wealth share of experts vanishes, the interest rate and

drift in the wealth share diverge to negative and positive infinity, respectively. Further,

the volatility of the wealth share is everywhere increasing with the exogenous volatility.

This will not be true when there is a lower bound on the interest rate, since whenever

the storage technology is utilized in equilibrium, reductions in exogenous uncertainty will

increase the volatility in the wealth share.12 These equilibrium quantities for the logarithmic

case therefore serve as a useful initial guess for the general case.

Numerical illustration: We have solved an example of the competitive equilibrium

for the above economy with the parameters:

(γ = 2.0, ρ = (0.1, 0.075), θ = 0.5, σσ = 0.15, σ = 0.2,ΠE = 0.1, r = 0,

(Σ,Σ) = (0.1, 0.3), N = (120, 60),m = 4,∆t = 10−9,∆y = 10−4).
(48)

With a tolerance of 10−6 for both the individual problem in the supremum norm for

V
1

1−γ and the iterations of the equilibrium quantities in the norm ||(r, xµx, xσx)|| := ||r||∞+

||xµx||∞+||xσx||∞, our policy iteration algorithm converges in around five seconds beginning

from an initial guess in which r, µx and σx are fixed at their logarithmic values, where we

again use the standard scipy sparse solver (scipy.sparse.linalg.spsolve) in Python and an

Intel Core i7-8650U processor. Figure 5 gives the interest rate and the investment function

of experts, Figure 6 gives the drift and diffusion of the wealth share and Figure 7 gives the

value functions.13 Note that the domain for the investment function has been truncated to

[0.25, 1]× [Σ×Σ] as investment appears to diverge to negative infinity as the wealth share

vanishes.

12This is reminiscent of (but distinct from) the the so-called “volatility paradox” highlighted by Brunner-
meier and Sannikov (2016), in which illiquidity of capital leads to the non-mononicity of endogenous risk
with respect to exogenous risk, even in the absence of a lower bound on the interest rate.

13These figures appear different from those in the original FRBC working paper due in part to a coding
error for the updating of the law of motion for the wealth share that was corrected upon revision.
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Figure 5: Interest rate and investment function
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Figure 6: Drift and diffusion of wealth share
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Figure 7: Value functions of expert and household

The lack of general closed-form solutions makes it difficult to systematically compare Al-

gorithm 5 with Algorithm 6 for general preferences. Nonetheless, we believe that the policy
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function approach in Algorithm 6 has several advantages over the false transient approach

in Algorithm 5. First note that the chain construction and updating of all equilibrium

quantities are common to both algorithms, and so they possess essentially the same level

of programming difficulty, since we are only replacing a value function iteration step with

a policy iteration step. The important differences between the two concern the stability of

each algorithm and the speed of convergence as the timestep becomes small. In the absence

of any changes in prices or the law of motion of the expert wealth share, the Bellman op-

erator appearing in the false transient approach is a contraction with modulus equal to the

rate of discount between successive periods. Consequently, as the grid size increases and

an increasingly small timestep is necessary to ensure that probabilities remain within the

unit interval, the value functions and equilibrium quantities update very slowly, and small

changes between successive iterations provide no assurance of convergence.

We now illustrate the behavior over time of the false transient approach for various

choices of the timestep and two separate initial conditions. We fix parameters at (48),

except that we make the grid coarser and increase the timestep in order to give the false

transient approach the best chance for rapid convergence. We now choose N = (40, 20)

and ∆y = 10−1, and vary ∆t between 10−3 and 3 × 10−3.14 We denote the interest rate

and drift and diffusion of the wealth share found using the policy iteration approach above

by rPI, µxPI and σxPI, and the corresponding quantities found in the ith stage of the false

transient approach by riFT, µ
i
xFT and σi

xFT. We then define

Ei = ||riFT − rPI||∞ + ||xµi
xFT − xµxPI||∞ + ||xσi

xFT − xσxPI||∞.

Figure 8 plots log10(Ei) against i for various values of ∆t. The figure on the left begins

at prices and the law of motion associated with logarithmic utility (and hence the value

functions are identically unity), while the figure on the right begins at the values found

with the policy iteration algorithm. The left figure shows that as we increase the number of

iterations, the quantities found using the false transient algorithm appear to be converging

to those found using the policy iteration approach, but the convergence is very slow, even

for a fairly coarse grid, taking several minutes to compute. The figure on the right shows

that when beginning at the value found by the policy iteration approach, the values found

with the false transient approach remain close to the initial condition, providing confidence

that the computed solution does indeed constitute a competitive equilibrium.

We emphasize that we do not claim guaranteed convergence of our algorithm to the

true competitive equilibrium. Indeed, for some parameters we have observed a failure of

convergence of prices and the law of motion within the above tolerance, often near regions in

14For ∆t = 4 × 10−3, the false transient approach broke down, as expressions for probabilities failed to
remain in the unit interval.
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Figure 8: Log10 difference between policy iteration and false transient quantities

which the interest rate hits the lower bound r, at which point the policy iteration algorithm

appears to oscillate. However, in light of the preceding analysis and the absence of general

existence and convergence results in the literature, we believe the policy iteration algorithm

will prove useful to practitioners in the burgeoning macrofinance literature surveyed in

Brunnermeier and Sannikov (2016), and so we leave further exploration of competitive

equilibria to future work.

5 Conclusion

In this paper we explore several applications of the Markov chain approximation (MCA)

method of Harold Kushner and Paul Dupuis to optimal control problems in economics,

illustrating some unutilized benefits. We first show that for certain choices of the approx-

imating chain, the MCA method with policy function iteration coincides with a limiting

version of the widely-used implicit finite-difference scheme of Achdou et al. (2022). We then

demonstrate the benefits of a more general specification by means of two classes of exam-

ples. In the first, we use variations of modified policy function iteration to solve income

fluctuation problems, both with and without discrete choices. In the second, we show how

the MCA method may be applied to problems with high correlation among state variables,

and illustrate the benefit of exploiting stationarity wherever applicable. In both cases, the

MCA is robust, easy to apply and can result in an increase in speed of more than an order

of magnitude over more commonly-applied methods.
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Bonnans, J. F., Ottenwaelter, É., and Zidani, H. A fast algorithm for the two dimen-

sional HJB equation of stochastic control. ESAIM: Mathematical Modelling and Numer-
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A Linear-quadratic regulator problem

To verify the accuracy of the algorithms, this section records closed-form expressions for a class

of linear-quadratic control problems. Lemma 14 treats the standard case of an infinite-horizon

linear-quadratic regulator problem, while Lemma 15 treats the (slightly non-standard) case in which

volatility is linear in the state variable. The former will be useful for illustrating the benefits

associated with modified policy function iteration, while the latter will illustrate the applications of

non-local transitions. Suppose that the objective to be maximized is

E
[∫ ∞

0

e−ρtF (xt, ut)dt

]
where for some symmetric positive definite matrices Q and R the flow payoffs are given by

F (x, u) = −1

2
xTQx− 1

2
uTRu (49)

where x ∈ Rn and u ∈ Rq are the state and control vectors, respectively, for some integers n, q ≥ 1.

Now suppose that for some A ∈ Rn×n, B ∈ Rn×q and σ : Rn → Rn×m the law of motion for the

state is

dxt = [Axt +But]dt+ σ(xt)dZt
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where Z := (Zt)t≥0 is m-dimensional Brownian motion. Write µ(x, u) = Ax+Bu for the drift as a

function of the state and controls, and note that the Hamilton-Jacobi-Bellman equation is

ρV (x) = max
u∈Rq

F (x, u) +

n∑
i=1

µi(x, u)Vi(x) +
1

2

n∑
i=1

n∑
j=1

aijVij(x) (50)

where aij(x) = (σ(x)σ(x)T )ij . If σ is constant then we obtain the following.

Lemma 14. The solution to (50) is V (x) = −xTPx/2 − d, where P is a symmetric matrix that

solves

ρP = Q+ PA+ATP − PTBR−1BTP (51)

the constant term is d = [2ρ]−1trace(σσTP ), and the policy function is

u = −R−1BTPx. (52)

Proof of Lemma 14. For an arbitrary symmetric positive definite matrix M we have

d

dxk
xTMx =

n∑
i=1

n∑
j=1

Mij
d

dxk
(xixj) =

n∑
j=1

Mkjxj +

n∑
i=1

Mikxi.

Using the symmetry of M , we have ∇xTMx/2 = Mx and HxTMx/2 = M . Assuming a solution of

the form V (x) = −xTPx/2 +D, substitution into the right-hand side of (50) gives

max
u∈Rq

−1

2
xTQx− 1

2
uTRu−

n∑
i=1

n∑
j=1

(
n∑

k=1

Aikxk +

q∑
k=1

Bikuk

)
Pijxj −

1

2

n∑
i=1

n∑
j=1

aijPij .

For any i = 1, . . . , n we have

− d

dui

n∑
h=1

n∑
g=1

Phg

(
n∑

k=1

Ahkxk +

q∑
k=1

Bhkuk

)
xg = −

n∑
h=1

n∑
g=1

PhgBhixg.

The first-order conditions become
∑n

k=1 Rikuk = −
∑n

h=1

∑n
g=1 PhgBhixg, which is exactly (52).

Substitution then gives

n∑
i=1

µi(x, u)Vi(x) = −
n∑

i=1

n∑
j=1

(
n∑

k=1

Aikxk +

q∑
k=1

Bikuk

)
Pijxj = −1

2
xT (ATP + PA)x− uTBTPx

where we used the fact that xT (ET + E)x/2 = xTEx for all x and any matrix E. Using this and

substituting into the Hamilton-Jacobi-Bellman equation then gives

−ρ

2
xTPx− ρd = −1

2
xTQx− 1

2
xT (ATP + PA)x− 1

2
uTRu− uTBTPx− 1

2
trace(ΣΣTP ) (53)
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where we used the fact that
∑n

i=1

∑n
j=1 aijPij = trace(ΣΣTP ), since P is symmetric. Finally,

−1

2
uTRu− uTBTPx = −1

2
(R−1BTPx)TRR−1BTPx+ (BR−1BTPx)TPx

=
1

2
xPTBR−1BTPx

so substituting into (56) and equating quadratic and constant parts gives the result.

Note that P solves (51) if and only if it solves the undiscounted problem

0 = Q+ P (A− ρI/2) + (A− ρI/2)TP − PTBR−1BTP

and so the analysis for the discounted case follows from results from the undiscounted case, with

A replaced by A − ρI/2. The standard linear-quadratic regulator problem analyzed in Lemma

14 assumes constant volatility. To illustrate the flexibility of the method in treating some cases

that appear with high correlation, we consider here an extension of the standard linear-quadratic

framework in which the volatility is linear in the state variables. The flow payoff remains (49) for

some symmetric positive definite matrices Q and R, but the law of motion for the state variables is

now dxt = [Axt +But]dt+ σxtdZt where σ ∈ Rn×n and Z is scalar Brownian motion.

Lemma 15. If σ is a multiple of the identity, then the value function is V (x) = −xTPx/2 where

P solves

0 = Q+ P (A+ [σ2 − ρ]I/2) + (A+ [σ2 − ρ]I/2)TP − PTBR−1BTP. (54)

Proof. The Hamilton-Jacobi-Bellman equation remains

ρV (x) = max
u∈Rq

F (x, u) +

n∑
i=1

µi(x, u)Vi(x) +
1

2

n∑
i=1

n∑
j=1

aij(x)Vij(x) (55)

where aij(x) = (σxxTσT )ij . If we again assume a solution of the form V (x) = −xTPx/2 for some

symmetric positive definite matrix P then the expressions for both the derivatives and optimal policy

remain unchanged and the Hamilton-Jacobi-Bellman equation reduces to

−ρ

2
xTPx = −1

2
xTQx− 1

2
xT (ATP + PA)x+

1

2
xPTBR−1BTPx− 1

2
xT
(
σTPσ

)
x (56)

where we used
1

2
xT
(
σTPσ

)
x =

1

2

n∑
i=1

n∑
j=1

Pij

n∑
k=1

n∑
h=1

σikσjhxkxh

The equation we must solve is then

0 = Q+ P (A− ρI/2) + (A− ρI/2)TP − PTBR−1BTP + σTPσ. (57)

If σ is a multiple of the identity then σTPσ = (Pσ2I + σ2IP )/2 and (59) reduces to (54).

Lemma 15 will be useful to illustrate how the FSMC method may be used to deal with problems

for which the noise terms are perfectly correlated. We now use the closed-form expressions for value
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functions and policy functions in Lemma 14 and Lemma 15 to verify the accuracy of the Markov

chain approximation method. There are many tests that we could conduct. We choose only a select

few to illustrate the points highlighted in the main text and to provide confidence in the results

recorded in the main text.

A.1 Independent noise

We first consider a three-dimensional problem with independent noise terms. This corresponds to

the above situation in which σ is a diagonal matrix with main diagonal written [σ0 σ1 σ2]. We

consider domains in R3 of the form [0,M0] × [0,M1] × [0,M2] for constants M0,M1 and M2. Now

define ∆i = Mi/Ni and Si = {∆i, . . . ,Mi−∆i} for i = 0, 1, 2 and we let our grids be S = S0×S1×S2

and adopt the transition probabilities

p(x0 ±∆0, x1, x2) =
∆t

∆2
0

(
σ2
0

2
+ ∆0(Ax+Bu)±0

)
p(x0, x1 ±∆1, x2) =

∆t

∆2
1

(
σ2
1

2
+ ∆1(Ax+Bu)±1

)
p(x0, x1, x2 ±∆2) =

∆t

∆2
2

(
σ2
2

2
+ ∆2(Ax+Bu)±2

)
.

(58)

We wish to avoid case-by-case technicalities and so consider problems with a single control, so that

R may be interpreted as a scalar that we normalize as R = 1, and we write B = [b0, b1, b2]
T . The

Riccati equation and policy function from Lemma 14 become

ρP = Q+ PA+ATP − PTBBTP

u = −BTPx.
(59)

We choose parameters for which the drift is always negative. The maximization becomes

max
u≤0

−1

2
u2 + e−ρ∆t

(
b0V

0
B + b1V

1
B + b2V

2
B

)
u

and so the optimal control is obviously u = min{e−ρ∆t
(
b0V

0
B + b1V

1
B + b2V

2
B

)
, 0}. We will choose

our timestep to be as large as possible while ensuring that the expressions for probabilities lie in

the unit interval. If we restrict attention to controls such that Ax+Bu ≤ 0 in each component the

above probabilities will lie in the unit interval provided

1 ≥ ∆t

(
σ2
0

∆2
0

+
σ2
1

∆2
1

+
σ2
2

∆2
2

+
(Ax+Bu)−0

∆0
+

(Ax+Bu)−1
∆1

+
(Ax+Bu)−2

∆2

)
.

To use the above to obtain an appropriate state-dependent timestep we require a bound on the control

u. For this we choose u to be 3 × the optimal policy function. Table 6 and Table 7 document the

time until convergence for modified policy function iteration and the associated average percentage

error with the closed-form solution for the value function, for the parameters

(ρ,Q,A,B, σ, (M1,M2,M3)) = 0.1, I3, 0.01× I3, (0.025, 0.025, 0.025), 0.4× I3, (10, 10, 10))
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PFI VFI k = 10 k = 50 k = 100 k = 200
Grid size

(10, 10, 10) 0.097 1.730 0.197 0.073 0.076 0.083
(20, 20, 20) 1.576 13.320 1.437 0.419 0.249 0.285
(30, 30, 30) 15.583 76.555 8.213 2.121 1.281 0.885
(40, 40, 40) 148.697 265.587 28.631 7.348 4.261 3.014

Table 6: Time until convergence in controlled LQ problem: MPFI algorithm

PFI VFI k = 10 k = 50 k = 100 k = 200
Grid size

(10, 10, 10) 3.685 3.685 3.685 3.685 3.685 3.685
(20, 20, 20) 1.369 1.369 1.369 1.369 1.369 1.369
(30, 30, 30) 0.764 0.764 0.764 0.764 0.764 0.764
(40, 40, 40) 0.507 0.507 0.507 0.507 0.507 0.507

Table 7: L1 norm of percentage error in controlled LQ problem: MPFI algorithm

where I3 denotes the 3×3 identity matrix, and a tolerance in the supremum norm between iterations

of 10−6. Table 8 and Table 9 perform the analogous exercise for generalized policy function iteration.

A.2 Perfectly correlated noise

Algorithm 4 is intuitive to us as it requires only a naive minimization of errors in the local consis-

tency requirements. To improve accuracy, however, we may draw upon the geometric analysis of

Bonnans et al. (2004), which in turn builds upon the more general framework of Bonnans and Zidani

(2003). Note that the local consistency requirements for our drift-free process will hold exactly if

the transitions are symmetric about the origin and the non-negative components are selected from

PFI k = 0 k = 10 k = 50 k = 100 k = 200
Grid size

(10, 10, 10) 0.117 0.957 0.113 0.092 0.097 0.107
(20, 20, 20) 1.603 9.950 1.077 0.301 0.280 0.324
(30, 30, 30) 15.802 64.712 7.016 1.944 1.219 0.898
(40, 40, 40) 149.726 243.207 26.408 6.870 4.154 2.876

Table 8: Time until convergence in controlled LQ problem: Generalized MPFI algorithm
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PFI k = 0 k = 10 k = 50 k = 100 k = 200
Grid size

(10, 10, 10) 0.952 0.952 0.952 0.952 0.952 0.952
(20, 20, 20) 0.472 0.472 0.472 0.472 0.472 0.472
(30, 30, 30) 0.314 0.314 0.314 0.314 0.314 0.314
(40, 40, 40) 0.236 0.236 0.236 0.236 0.236 0.236

Table 9: L1 norm of percentage error in controlled LQ problem: Generalized MPFI
algorithm

a subset Γ̂(i, j) ⊆ Γ(i, j) with probabilities {∆tηξ|ξ ∈ Γ̂(i, j)} satisfying

∑
ξ∈Γ̂(i,j)

ηξξξ
T =

[
σ2
1/2 σ1σ2/2

σ1σ2/2 σ2
2/2

]
. (60)

The set of sums of the form on the left-hand side of (60) is a convex cone. Bonnans et al. (2004)

approximate a solution to (60) by projecting the right-hand side onto this cone. To see how, denote

the set of positive semi-definite 2×2 matrices by PSD2 and define F : PSD2 → R3 and R : R3 → R3

by F (a) = (a11,
√
2a12, a22)

T and R(z) = ((z1 − z3)/
√
2, z2, (z1 + z3)/

√
2), respectively. Note that

the function R is a rotation and that the cone C := {R(F (a))|a ∈ PSD2} points “upwards” in

R3. We define H : C → R2 by H(x) = (x1/x3, x2/x3) and identify the set of covariance matrices

with the disc D := H(R(F (PSD2))). The boundary of the set D corresponds to those covariance

matrices associated with perfectly correlated diffusion processes, in which case a11a22 = a212. We

identify integer pairs (p, q) with the fraction q/p, and given q/p and q′/p′ define the child q′′/p′′ :=

(q + q′)/(p + p′). Given a point in the grid, we choose transitions Γ̂(i, j) by beginning near the

origin before passing from adjacent points to their children. For any q/p write ξpq = [p, q]T and

Xpq = ξpqξ
T
pq = [p, q]T [p, q], and given q/p and q′/p′ define H(q/p, q′/p′) to be the plane generated

by Xpq and Xp′q′ and identify it with its range under F . The associated projection operator is

PH(q/p, q′/p′) = A(ATA)−1AT , where

AT =

[
p2

√
2pq q2

(p′)2
√
2p′q′ (q′)2

]
.

We will be concerned only with the case in which σ1, σ2 ≥ 0. For a fixed m ≥ 1 we approximate a

solution to (60) as follows, where we write ahij = (σσT )ij/(∆i∆j).
15

Algorithm 7 (Bonnans et al. (2004) approximation). Define (q/p, q′/p′) = (1/1, 0/1) if ah11 ≥ ah22
and (q/p, q′/p′) = (1/0, 1/1) otherwise. Notice that we have q/p ≥ ah22/a

h
11 ≥ q′/p′. We then update

as follows:

15We are using the fact that in this problem, noise is perfectly correlated, which allows us to simplify the
algorithm. For example, our covariance matrix is never diagonally dominant, and for simplicity we omit
reference to a tolerance level.
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m = 2 m = 4 m = 6 m = 8 m = 10
Grid size

(50, 50) 5.45 2.37 2.16 2.30 2.58
(100, 100) 4.68 1.56 1.16 1.10 1.14
(150, 150) 4.43 1.30 0.88 0.77 0.74
(200, 200) 4.31 1.17 0.74 0.62 0.57

Table 10: L1 norm of percentage error in correlated LQ problem: three-point algorithm

m = 2 m = 4 m = 6 m = 8 m = 10
Grid size

(50, 50) 2.50 0.56 0.36 0.43 0.54
(100, 100) 2.44 0.48 0.21 0.16 0.18
(150, 150) 2.42 0.46 0.18 0.11 0.11
(200, 200) 2.41 0.45 0.16 0.10 0.08

Table 11: L1 norm of percentage error in correlated LQ problem: five-point algorithm

(i) If max{p+ p′, q + q′} > m then stop. Otherwise, go to Step (ii).

(ii) If ah22/a
h
11 ≥ (q + q′)/(p + p′), return to Step (i) with q′/p′ = (q + q′)/(p + p′). Otherwise,

return to Step (i) with q/p = (q + q′)/(p+ p′).

We then choose Sh = {(p, q), (p′, q′)} and ηpq, ηp′q′ ≥ 0 satisfying

ηpqXpq + ηp′q′Xp′q′ = PH(q/p, q′/p′)ah

and for these weights define probabilities pi = ηi∆t. Finally, we choose the timestep so that p0+p1 =

p for some given (possibly state-dependent) p ∈ (0, 1/2). This amounts to choosing ∆t(η0+ η1) = p,

with implied probabilities pi = pηi/(η0 + η1).

We now verify the accuracy of the Markov chains constructed in both Section 4.2 and in Al-

gorithm 7 for the case of perfectly correlated diffusion processes in two dimensions. In all of the

following cases we set Q equal to the identity, omit drift and controls, set σ = 0.3× I3, ρ = 0.15 and

M1 = M2 = 1, and set p = 0.001 everywhere (adjusting the timestep accordingly in each algorithm).

Table 10 documents the average of the percent difference between the true and computed value

function with three points, where m refers to the largest size of the non-local transitions. Table 11

documents the same quantities for the case with five points (Algorithm 4) and Table 12 gives the

same for the method of Bonnans et al. (2004). As can be seen, for all grids considered these methods

are strictly increasing in their accuracy (3-point, then 5-point, then Bonnans et al. (2004)).
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m = 2 m = 4 m = 6 m = 8 m = 10
Grid size

(50, 50) 0.53 0.15 0.10 0.09 0.09
(100, 100) 0.49 0.10 0.04 0.03 0.03
(150, 150) 0.48 0.09 0.03 0.02 0.01
(200, 200) 0.47 0.08 0.03 0.02 0.01

Table 12: L1 norm of percentage error in correlated LQ problem: Bonnans et al. (2004)
algorithm

B Macrofinance notes

B.1 Problems with highly correlated state variables

Proof of claims in Algorithm 4. Define the candidate o terms in (36) as e11, e12 and e22. We proceed

on a case-by-case basis, depending upon the sign of w − 1. The errors are

e11 = E[(∆x1)
2]−∆tσ

2
1

e12 = E[(∆x1)(∆x2)]−∆tσ1σ2

e22 = E[(∆x2)
2]−∆tσ

2
2 .

(61)

Condition w > 1 is equivalent to σ1/∆1 > σ2/∆2 or σ1/σ2 > ∆1/∆2. In this case m11 = m21

and ∆t = 2p∆2
1m

2
11/σ

2
1 , so the first term in (61) is e11 = 2p∆2

1m
2
11 − ∆tσ

2
1 = 0. We also have

m22 = m12 + 2(z ≤ 0)− 1, and so the second term in (61) becomes

e12 = 2p∆1∆2m11((1− |z|)m12 + |z|[m12 + 2(z ≤ 0)− 1])−∆tσ1σ2

= 2p∆1∆2m11(|z|[2(z ≤ 0)− 1] + z) = 0.

Finally, the third error term in (61) simplifies to

e22 = 2p∆2
2

(
|z|m2

12 + (1− |z|)[m12 + 2(z ≤ 0)− 1]2
)
−∆tσ

2
2

= 2p∆2
2

[
m2

12 + (1− |z|)[2(2(z ≤ 0)− 1)m12 + (2(z ≤ 0)− 1)2]− σ2
2(∆

2
1/∆

2
2)m

2
1/σ

2
1

]
= 2p∆2

2

[
|z|[2(2(z ≤ 0)− 1)m2 + (2(z ≤ 0)− 1)2] +m2

2 −m2
1/w

2
]
.

Using z = m12 −m11/w we write (m11/w)
2 = (m12 − z)2 = m2

12 − 2m12z + z2 to note

e22 = 2p∆2
2

[
|z|[(4(z ≤ 0)− 2)m12 + 1] + 2m12z − z2

]
= 2p∆2

2(|z| − |z|2)

as claimed. The case with w ≤ 1 is symmetric.
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B.2 Evolution of wealth shares

We now determine the law of motion for the wealth share x, by aggregating over the choices of

experts and households. Lemma 16 shows how the law of motion of the wealth share depends upon

the law of motion of the wealth of the individual agents.

Lemma 16. Suppose that dait/ait = µitdt+σitdZt for i ∈ {E,H} and that x := N/(qK), where N

is the aggregate wealth of experts. Then dxt = xtµxdt+ xtσxdZt where µx and σx are

xµx = x(1− x)(µE − µH − (σEx+ σH(1− x))(σE − σH))

xσx = x(1− x)(σE − σH).

Proof. Aggregating over experts gives dNt/Nt = µEdt+ σEdZt and hence

d(qtKt) = µENtdt+ σENtdZt + µH(qtKt −Nt)dt+ σH(qtKt −Nt)dZt

d(qtKt)

qtKt
= [µExt + µH(1− xt)]dt+ [σExt + σH(1− xt)]dZt.

(62)

Note that if dat/at = µadt + σadZt and dbt/bt = µbdt + σbdZt, then using Ito’s lemma ct := at/bt

satisfies dct/ct = (µa − µb − σb(σa − σb))dt+ (σa − σb)dZt. Applying to (62) gives

dxt

xt
= (µE − [µExt + µH(1− xt)]− (σExt + σH(1− xt))(σE − [σExt + σH(1− xt)])dt

+ (σE − [σExt + σH(1− xt)])dZt

which simplifies as claimed.

B.3 Individual problems

For an arbitrary ∆y > 0 we define

E1(∆y) =
e(1−γ)∆y − 1

(1− γ)∆y

E2(∆y) =
1

γ(1− γ)

(
1

∆2
y

[2− e−(1−γ)∆y − e(1−γ)∆y ] +
1

∆y
[1− e−(1−γ)∆y ]

)

Ec(∆y) =

(
1− e−(1−γ)∆y

(1− γ)∆y

)−1/γ

.

(63)

Note that lim∆y→0 E1(∆y) = lim∆y→0 E2(∆y) = lim∆y→0 Ec(∆y) = 1.

Proof of Lemma 12. Using homogeneity, eliminating terms independent of controls, and dividing by

∆te
−ρ∆tV , the maximization in the discrete Bellman equation becomes

max
c,k≥0

eρ∆t
ρc1−γ

V (1− γ)
+

[e−(1−γ)∆y − 1]

(1− γ)∆y
c+ (σxxVE1D/V + σσVE2D/V )σk

+
[e(1−γ)∆y − 1]

(1− γ)∆2
y

(
σ2k

2
/2 + ∆y(Π− r)k

)
+ (1 +∆y)

[e−(1−γ)∆y − 1]

(1− γ)∆2
y

σ2k
2
/2.

(64)
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Eliminating the terms independent of capital gives

1

V
(σxxVE1D + σσVE2D)σk +

1

∆y(1− γ)
[e(1−γ)∆y − 1](Π− r)k

+
1

∆2
y(1− γ)

(
e(1−γ)∆y − 1 + (1 + ∆y)[e

−(1−γ)∆y − 1]
)
σ2k

2
/2.

The first-order condition is then

0 =
1

V
(σxxVE1D + σσVE2D)σ +

1

∆y(1− γ)
[e(1−γ)∆y − 1](Π− r)

− 1

γ(1− γ)

(
1

∆y
[1− e−(1−γ)∆y ]− 1

∆2
y

[e(1−γ)∆y − 2 + e−(1−γ)∆y ]

)
σ2γk

which may be written 0 = (σxxVE1D + σσVE2D)σ/V +E1(∆y)(Π− r)−E2(∆y)σ
2γk, where E1, E2

and Ec are given by (63), from which rearrangement gives the result.

Lemma 17. For any c, k we have lim∆t,∆y→0 T (c, k; ∆t,∆y) = T (c, k) where

T (c, k)V = −
(
ρ− (1− γ)(r − c+ (Π− r)k − γσ2k

2
/2)
) V

1− γ

+
(
[µxx]

+ + [σxx(1− γ)σk]+
)VE1F

1− γ
+
(
[µxx]

− + [σxx(1− γ)σk]−
) [−VE1B ]

1− γ

+
(
[θ(σ − σ)]+ + [σσ(1− γ)σk]+

)VE2F

1− γ
+
(
[θ(σ − σ)]− + [σσ(1− γ)σk]−

) [−VE2B ]

1− γ

+
(1− |z|)
∆t(1− γ)

(V (x+m12∆x, σ +m13∆σ) + V (x−m12∆x, σ −m13∆σ)− 2V )

+
|z|

∆t(1− γ)
(V (x+m22∆x, σ +m23∆σ) + V (x−m22∆x, σ −m23∆σ)− 2V )

where recall ∆t is given by (39).

Proof. Using ∆t = p∆t and the transition probabilities defined after (41), dividing all terms in the

Bellman equation by ∆t and rearranging gives

0 =
1

∆t
(e−ρ∆t [1− 2p]− 1)

V

1− γ
+

ρc1−γ

1− γ
+ e−ρ∆t

1

∆y
[e−(1−γ)∆y − 1]

cV

1− γ

+
e−ρ∆t

∆2
y

[(
σ2k

2
/2 + ∆y(Π− r)k

)
[e(1−γ)∆y − 1] + (1 + ∆y)[e

−(1−γ)∆y − 1]σ2k
2
/2
] V

1− γ

+ e−ρ∆t(σxxVE1D + σσVE2D)σk + e−ρ∆t
1

∆y
[e(1−γ)∆y − 1]

rV

1− γ

+
e−ρ∆t

1− γ

(
[µxx]

+VE1F + [µxx]
−[−VE1B ] + [θ(σ − σ)]+VE2F + [θ(σ − σ)]−[−VE2B ]

)
+ e−ρ∆t

(1− |z|)
∆t(1− γ)

(V (x+m12∆x, σ +m13∆σ) + V (x−m12∆x, σ −m13∆σ))

+ e−ρ∆t
|z|

∆t(1− γ)
(V (x+m22∆x, σ +m23∆σ) + V (x−m22∆x, σ −m23∆σ)).
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Recalling the definitions (63) and simplifying, this becomes

T (c, k; ∆t,∆y)V =
1

∆t
(e−ρ∆t − 1)

V

1− γ

+ e−ρ∆t(1− γ)
(
E1

(
r − ce−(1−γ)∆y + (Π− r)k

)
− E2γσ

2k
2
/2
) V

1− γ

+ e−ρ∆t

((
[µxx]

+ + [σxx(1− γ)σk]+
)VE1F

1− γ
+
(
[µxx]

− + [σxx(1− γ)σk]−
) [−VE1B ]

1− γ

)
+ e−ρ∆t

((
[θ(σ − σ)]+ + [σσ(1− γ)σk]+

)VE2F

1− γ
+
(
[θ(σ − σ)]− + [σσ(1− γ)σk]−

) [−VE2B ]

1− γ

)
+ e−ρ∆t

(1− |z|)
∆t(1− γ)

(V (x+m12∆x, σ +m13∆σ) + V (x−m12∆x, σ −m13∆σ)− 2V )

+ e−ρ∆t
|z|

∆t(1− γ)
(V (x+m22∆x, σ +m23∆σ) + V (x−m22∆x, σ −m23∆σ)− 2V )

which gives the result upon simplification.
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